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Introduction

We wish to determine a parametrized controller K (θ) for an unknown true
system S

Control design: determine K (θ) minimizing a certain objective function
V (θ) for the loop [K (θ) S]

Since the true system S is unknown, V (θ) is unknown

Model-based control design: a model of S is used to approximate V (θ)

Experiment-based control design: a model of V (θ) is learnt by performing
multiple experiments on S with different K (θ)
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Introduction

Experiment-based control design: a model of V (θ) is learnt by performing
multiple experiments on S with different K (θ)

An experiment with K (θ) leads to a measure Ṽ (θ) of V (θ)

From the data (θk , Ṽ (θk)) (k = 1, ..., nit), a model of V (θ) can be
determined/identified using e.g., a Gaussian Process

The successive experiments with θk (k = 1, ..., nit) are generally
determined via global optimization algorithms such as Bayesian
Optimization
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Introduction

Some of these multiple experiments may however pose a safety issue (e.g.,
instability)

The issue of safe experimentation is generally addressed via regularity
assumptions on V (θ)

Here we propose an alternative approach based on a nominal model
allowing to determine a safety zone for experimentation
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Classical Bayesian Optimization (without safety
constraints)

Bayesian optimization minimizes V (θ) via a number nit of iterations

At iteration i ,

1 Execute experiment with K (θi ), measure Ṽ (θi )

2 Compute the Gaussian Process model Vi (θ) of V (θ) (and its
uncertainty) using (θk , Ṽ (θk)) (k = 1, .., i)

3 Construct acquisition function Ai (θ) using Vi (θ) and its uncertainty

4 Maximize Ai (θ) to obtain next query point θi+1

θi+1 is generally a point where Vi (θ) is small and/or where the uncertainty
of Vi (θ) is large (i.e., in regions of the θ-space where few θ has been
tested).

After nit iterations, θopt is then chosen as the tested θi leading to the
smallest value of the final model Vnit (θ) (or the smallest Ṽ (θi ))
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Classical Bayesian Optimization: example

iteration 4

V4(θ) and uncertainty
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Classical Bayesian Optimization: example

iteration 6

V6(θ) and uncertainty
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Imposing safety constraints

The BO algorithm may test K (θ) that pose safety concerns

How to avoid that?

We will here use a nominal model M of the unknown dynamics S to
determine a safety zone Θsafe

and we will ensure that only θ ∈ Θsafe will be effectively tested on S

To define Θsafe , we use the rationale:

If K (θ) gives poor performance on M, then it should not be applied on S
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Safety zone Θsafe

If K (θ) gives poor performance on M, then it should not be applied on S

=⇒

Θsafe = { θ | VM(θ) < Vsafe }

with VM(θ) the performance measure corresponding to V (θ), but for the
loop [K (θ) M] and Vsafe a scalar defining an acceptable VM(θ)
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Bayesian Optimization with safety constraints

We wish to minimize V (θ), but by testing only K (θ) with

θ ∈ Θsafe = { θ | VM(θ) < Vsafe }

Modified optimization problem:

argmin
θ∈Θ

J(θ) J(θ) =

{
V (θ) if VM(θ) < Vsafe

VM(θ) if VM(θ) ≥ Vsafe

If Bayesian Optimization is used to tackle this modified optimization
problem, the GP will model J(θ) instead of V (θ).
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Bayesian Optimization with safety constraints

argmin
θ∈Θ

J(θ) J(θ) =

{
V (θ) if VM(θ) < Vsafe

VM(θ) if VM(θ) ≥ Vsafe

The GP will model J(θ) instead of V (θ).

For this purpose, at iteration i , (θi , J̃(θi )) will be collected with

J̃(θi ) =

{
Ṽ (θi ) if VM(θi ) < Vsafe

VM(θi ) if VM(θi ) ≥ Vsafe

If the to-be-tested θi ̸∈ Θsafe , the unsafe experiment is replaced by the
computation of VM(θi )
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Bayesian Optimization with safety constraints

In order to stress even more the safety constraint, we will in fact consider
the following constrained BO optimization problem:

argmin
θ∈Θ

J(θ)

s.t. VM(θ) < Vsafe .

which can be solved via a similar procedure (the constraint is also modeled
as a GP)
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Linear simulation example

True system S described by P(s) = 10
(s+10)(s+1) with white noise v

(σv = 0.01)

To be controlled by PID K (s, θ) = k(s+p1)(s+p2)
s(s+4.2) (θ = (k, p1, p2))

Model reference objective: y(t, θ) for unit step c(t) close to:

ydes(t) =
9

s2 + 4.2s + 9
c(t) (tr = 1 s and D = 5%)

Initial model M(s) = 12
(s+8)(s+2)
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Linear simulation example: Ṽ (θ) and Θsafe

Experiment of 5 seconds on [K (s, θ) P(s)] with unit step c (Ts = 0.025 s)

=⇒ Ṽ (θ) = Ts

200∑
n=1

(y(nTs , θ)− ydes(nTs))
2

which is a measure of V (θ) = EṼ (θ)

Safety zone Θsafe = { θ | VM(θ) < Vsafe } defined with Vsafe = 0.1 and

VM(θ)=

Ts

200∑
n=1

(yM(nTs , θ)− ydes(nTs))
2 if [K (s, θ) M(s)] stable

100 Vsafe otherwise.

where yM(t, θ) = M(s)K(s,θ)
1+M(s)K(s,θ)c(t)
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Linear simulation example: Bayesian Optimization with
safety constraints

argmin
θ∈Θ

J(θ) J(θ) =

{
V (θ) if VM(θ) < 0.1

VM(θ) if VM(θ) ≥ 0.1

s.t. VM(θ) < 0.1.

We tackle this optimization problem by running 300 iterations of Bayesian
Optimization initialized with θinit = (0.75, 8, 2)

K (θinit) achieves yM(t, θinit) = ydes(t) i.e., VM(θinit) = 0

X. Bombois BO with safety constraints CT Identif 14 / 19



Linear simulation example: results

y(t, θinit) (blue) far from ydes(t) (red)

Optimized output y(t, θopt) (black)
almost equal to ydes(t)

From the 300 values of θ selected by the BO algorithm, 10% were outside
Θsafe and were thus not tested on S =⇒

Experiments with unstable controllers avoided

Average Ṽ (θ) for non-tested θ would have been 400x larger than for
the tested θ

X. Bombois BO with safety constraints CT Identif 15 / 19



Linear simulation example: results

y(t, θinit) (blue) far from ydes(t) (red)

Optimized output y(t, θopt) (black)
almost equal to ydes(t)

From the 300 values of θ selected by the BO algorithm, 10% were outside
Θsafe and were thus not tested on S =⇒

Experiments with unstable controllers avoided
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Non-linear simulation example

The only difference is the true system S which is now an Hammerstein
system:

y(t) = P(s) sat(u(t))

with the same P(s) = 10
(s+10)(s+1) and

sat(u(t)) =


u(t) if u(t) ∈ [−1.5 1.5]
1.5 if u(t) > 1.5
−1.5 if u(t) < −1.5

Ṽ (θ) will therefore be determined with an experiment on [K (s, θ) S]

Safe BO algorithm run for 300 iterations
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Non-linear simulation example: results

y(t, θinit) (blue) far from ydes(t) (red)

y(t, θopt) (black) close to ydes(t)

y(t, θopt) better than with ideal linear
design using P(s) i.e., ignoring
saturation (green)

From the 300 values of θ selected by the BO algorithm, 13% were outside
Θsafe and were thus not tested on S =⇒

Experiments with controllers yielding a limit cycle avoided

Average Ṽ (θ) for non-tested θ would have been 9x larger than for the
tested θ
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Conclusions

Safety constraint added to an experiment-driven controller calibration
approach to guarantee safe exploration

Safety constraint based on a nominal model knowledge

Current/future work

Adaptation of the model during the iterative process

More details at https://hal.archives-ouvertes.fr/hal-03559979
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