

CONTROL DESIGN VIA BAYESIAN OPTIMIZATION WITH SAFETY CONSTRAINTS

Xavier Bombois (CNRS, France), Marco Forgione (IDSIA, Lugano, Switzerland)

CT Identif, 19 January 2023

We wish to determine a parametrized controller $K(\theta)$ for an unknown true system $\mathcal S$

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of S is used to approximate $V(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

イロト イ押 トイヨ トイヨ トー

We wish to determine a parametrized controller $K(\theta)$ for an unknown true system $\mathcal S$

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of S is used to approximate $V(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

イロト イ母 トイヨ トイヨ トー

We wish to determine a parametrized controller $K(\theta)$ for an unknown true system $\mathcal S$

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of S is used to approximate $V(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

An experiment with $K(\theta)$ leads to a measure $\tilde{V}(\theta)$ of $V(\theta)$

From the data $(\theta_k, \tilde{V}(\theta_k))$ $(k = 1, ..., n_{it})$, a model of $V(\theta)$ can be determined/identified using e.g., a Gaussian Process

The successive experiments with θ_k ($k = 1, ..., n_{it}$) are generally determined via global optimization algorithms such as Bayesian **Optimization**

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Some of these multiple experiments may however pose a safety issue (e.g., instability)

The issue of safe experimentation is generally addressed via regularity assumptions on $V(\theta)$

Here we propose an alternative approach based on a nominal model allowing to determine a safety zone for experimentation

4 D F

- Some of these multiple experiments may however pose a safety issue (e.g., instability)
- The issue of safe experimentation is generally addressed via regularity assumptions on $V(\theta)$
- Here we propose an alternative approach based on a nominal model allowing to determine a safety zone for experimentation

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration *i*.

- **2 Execute** experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2 Compute** the Gaussian Process model $V_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ $(k = 1, ..., i)$
- **3 Construct** acquisition function $A_i(\theta)$ using $V_i(\theta)$ and its uncertainty
- **4 Maximize** $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $V_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the sm[all](#page-8-0)[e](#page-6-0)[s](#page-7-0)[t](#page-9-0) value of the final model $\mathcal{V}_{n,k}(\theta)$ $\mathcal{V}_{n,k}(\theta)$ $\mathcal{V}_{n,k}(\theta)$ $\mathcal{V}_{n,k}(\theta)$ (or the [sm](#page-6-0)allest $\tilde{V}(\theta_i)$) = \Box

X. Bombois **BO** with safety constraints **CT** Identif 5/19

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration *i*.

- **2 Execute** experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2 Compute** the Gaussian Process model $V_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ $(k = 1, ..., i)$
- **3 Construct** acquisition function $A_i(\theta)$ using $V_i(\theta)$ and its uncertainty
- **4 Maximize** $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $V_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the sm[all](#page-9-0)[e](#page-6-0)[s](#page-7-0)[t](#page-9-0) value of the final model $V_{n_{i}}(\theta)$ $V_{n_{i}}(\theta)$ $V_{n_{i}}(\theta)$ (or the [sm](#page-7-0)allest $\tilde{V}(\theta_{i})|_{i=1}$

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration i,

- **1 Execute** experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2 Compute** the Gaussian Process model $V_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ $(k = 1, ..., i)$
- **3 Construct** acquisition function $A_i(\theta)$ using $V_i(\theta)$ and its uncertainty
- **4 Maximize** $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $V_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the sm[all](#page-10-0)[e](#page-6-0)[s](#page-7-0)[t](#page-9-0) value of the final model $V_{n_{i}}(\theta)$ $V_{n_{i}}(\theta)$ $V_{n_{i}}(\theta)$ (or the [sm](#page-8-0)allest $\tilde{V}(\theta_{i})$)

X. Bombois **BO** with safety constraints **CT** Identif 5/19

Classical Bayesian Optimization: example

iteration 4

 $V_4(\theta)$ and uncertainty

$$
\Longrightarrow \theta_5 = -0.1
$$

4日下

 \rightarrow

Э× Þ

Classical Bayesian Optimization: example

iteration 6

$$
\Longrightarrow \theta_7 = -0.4
$$

4日下

. p Þ 299

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to

and we will ensure that only $\theta \in \Theta_{\text{safe}}$ will be effectively tested on S

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to determine a safety zone Θ_{safe}

and we will ensure that only $\theta \in \Theta_{\text{safe}}$ will be effectively tested on S

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to determine a safety zone Θ_{safe}

and we will ensure that only $\theta \in \Theta_{safe}$ will be effectively tested on S

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

=⇒

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

$$
\Theta_{\textit{safe}} = \{ \theta \mid V_{\textit{M}}(\theta) < V_{\textit{safe}} \}
$$

with $V_M(\theta)$ the performance measure corresponding to $V(\theta)$, but for the loop $[K(\theta)$ M] and V_{safe} a scalar defining an acceptable $V_M(\theta)$

-∢ 舟 ▶ -∢ ∃

We wish to minimize $V(\theta)$, but by testing only $K(\theta)$ with

$$
\theta \in \Theta_{\text{safe}} = \{ \theta \mid V_M(\theta) < V_{\text{safe}} \}
$$

$$
\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) & \text{if} \quad V_M(\theta) < V_{\text{safe}} \\ V_M(\theta) & \text{if} \quad V_M(\theta) \geq V_{\text{safe}} \end{cases}
$$

If Bayesian Optimization is used to tackle this modified optimization problem, the GP will model $J(\theta)$ instead of $V(\theta)$.

イロト イ押 トイヨ トイヨ トー

We wish to minimize $V(\theta)$, but by testing only $K(\theta)$ with

$$
\theta \in \Theta_{\text{safe}} = \{ \theta \mid V_M(\theta) < V_{\text{safe}} \}
$$

Modified optimization problem:

$$
\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) & \text{if} \quad V_M(\theta) < V_{\text{safe}} \\ V_M(\theta) & \text{if} \quad V_M(\theta) \geq V_{\text{safe}} \end{cases}
$$

If Bayesian Optimization is used to tackle this modified optimization problem, the GP will model $J(\theta)$ instead of $V(\theta)$.

$$
\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) & \text{if} \quad V_M(\theta) < V_{\text{safe}} \\ V_M(\theta) & \text{if} \quad V_M(\theta) \geq V_{\text{safe}} \end{cases}
$$

The GP will model $J(\theta)$ instead of $V(\theta)$.

For this purpose, at iteration $i,$ $(\theta_i, \; \tilde{J}(\theta_i))$ will be collected with

$$
\tilde{J}(\theta_i) = \begin{cases} \tilde{V}(\theta_i) & \text{if} \quad V_M(\theta_i) < V_{\text{safe}} \\ V_M(\theta_i) & \text{if} \quad V_M(\theta_i) \geq V_{\text{safe}} \end{cases}
$$

If the to-be-tested $\theta_i \notin \Theta_{safe}$, the *unsafe* experiment is replaced by the computation of $V_M(\theta_i)$

In order to stress even more the safety constraint, we will in fact consider the following constrained BO optimization problem:

arg min $J(\theta)$
 $\theta \in \Theta$ s.t. $V_M(\theta) < V_{safe}$.

which can be solved via a similar procedure (the constraint is also modeled as a GP)

 Ω

Linear simulation example

$$
c \xrightarrow{+} Q \xrightarrow{K(\theta)} \underbrace{u} \underbrace{f} \underbrace{f} \underbrace{f} \underbrace{f} \underbrace{y}(t, \theta)
$$

True system ${\cal S}$ described by $P(s)=\frac{10}{(s+10)(s+1)}$ with white noise v $(\sigma_{\rm v} = 0.01)$

To be controlled by PID $\mathcal{K}(s, \theta) = \frac{k(s+p_1)(s+p_2)}{s(s+4.2)}$ $(\theta = (k, p_1, p_2))$

Model reference objective: $y(t, \theta)$ for unit step $c(t)$ close to:

$$
y_{des}(t) = \frac{9}{s^2 + 4.2s + 9} c(t) \qquad (t_r = 1 \text{ s and } D = 5\%)
$$

Initial model $M(s) = \frac{12}{(s+8)(s+2)}$

Linear simulation example: $\tilde{V}(\theta)$ and Θ_{safe}

Experiment of 5 seconds on $[K(s, \theta) P(s)]$ with unit step c ($T_s = 0.025 s$)

$$
\implies \tilde{V}(\theta) = T_s \sum_{n=1}^{200} (y(nT_s, \theta) - y_{des}(nT_s))^2
$$

which is a measure of $V(\theta) = E\tilde{V}(\theta)$

Safety zone $\Theta_{safe} = \{ \theta \mid V_M(\theta) < V_{safe} \}$ defined with $V_{safe} = 0.1$ and

$$
V_M(\theta) = \begin{cases} T_s \sum_{n=1}^{200} (y_M(nT_s, \theta) - y_{des}(nT_s))^2 & \text{if } [K(s, \theta) \ M(s)] \text{ stable} \\ 100 \ V_{safe} & \text{otherwise.} \end{cases}
$$

where $y_{\textit{M}}(t,\theta) = \frac{M(s)K(s,\theta)}{1+M(s)K(s,\theta)}c(t)$

Linear simulation example: Bayesian Optimization with safety constraints

$$
\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) & \text{if } V_M(\theta) < 0.1 \\ V_M(\theta) & \text{if } V_M(\theta) \ge 0.1 \end{cases}
$$
 s.t. $V_M(\theta) < 0.1$.

We tackle this optimization problem by running 300 iterations of Bayesian Optimization initialized with $\theta_{\text{init}} = (0.75, 8, 2)$

 $K(\theta_{\text{init}})$ achieves $y_M(t, \theta_{\text{init}}) = y_{\text{des}}(t)$ i.e., $V_M(\theta_{\text{init}}) = 0$

Linear simulation example: results

- \bullet y(t, θ_{init}) (blue) far from $y_{des}(t)$ (red)
- Optimized output $y(t, \theta_{opt})$ (black) almost equal to $y_{des}(t)$

From the 300 values of θ selected by the BO algorithm, 10% were outside Θ_{safe} and were thus not tested on $\mathcal{S} \Longrightarrow$

- Experiments with unstable controllers avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 400x larger than for the tested θ

Linear simulation example: results

- \bullet y(t, θ_{init}) (blue) far from $y_{des}(t)$ (red)
- Optimized output $y(t, \theta_{opt})$ (black) almost equal to $y_{des}(t)$

From the 300 values of θ selected by the BO algorithm, 10% were outside Θ_{safe} and were thus not tested on $\mathcal{S} \Longrightarrow$

- **•** Experiments with unstable controllers avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 400x larger than for the tested θ

Non-linear simulation example

The only difference is the true system S which is now an Hammerstein system:

 $y(t) = P(s)$ sat(u(t))

with the same $P(s)=\frac{10}{(s+10)(s+1)}$ and

$$
sat(u(t)) = \begin{cases} u(t) & \text{if } u(t) \in [-1.5 \ 1.5] \\ 1.5 & \text{if } u(t) > 1.5 \\ -1.5 & \text{if } u(t) < -1.5 \end{cases}
$$

 $V(\theta)$ will therefore be determined with an experiment on $[K(s, \theta) S]$ Safe BO algorithm run for 300 iterations

Non-linear simulation example: results

- \bullet y(t, θ_{init}) (blue) far from $y_{des}(t)$ (red)
- \bullet y(t, θ_{opt}) (black) close to $y_{des}(t)$

4 0 8

 \bullet y(t, θ_{opt}) better than with ideal linear design using $P(s)$ i.e., ignoring saturation (green)

From the 300 values of θ selected by the BO algorithm, 13% were outside Θ_{safe} and were thus not tested on $\mathcal{S} \Longrightarrow$

- Experiments with controllers yielding a limit cycle avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 9x larger than for the tested θ

Non-linear simulation example: results

- \bullet y(t, θ_{init}) (blue) far from $y_{des}(t)$ (red)
- \bullet y(t, θ_{opt}) (black) close to $y_{des}(t)$
- \bullet y(t, θ_{opt}) better than with ideal linear design using $P(s)$ i.e., ignoring saturation (green)

From the 300 values of θ selected by the BO algorithm, 13% were outside Θ_{safe} and were thus not tested on $\mathcal{S} \Longrightarrow$

- Experiments with controllers yielding a limit cycle avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 9x larger than for the tested θ

Conclusions

Safety constraint added to an experiment-driven controller calibration approach to guarantee safe exploration

Safety constraint based on a nominal model knowledge

Current/future work

• Adaptation of the model during the iterative process

More details at https://hal.archives-ouvertes.fr/hal-03559979

 200

Conclusions

Safety constraint added to an experiment-driven controller calibration approach to guarantee safe exploration

Safety constraint based on a nominal model knowledge

Current/future work

• Adaptation of the model during the iterative process

More details at https://hal.archives-ouvertes.fr/hal-03559979

2023 Spring School with M. Schoukens as guest lecturer

More details at https://spring-id-2023.sciencesconf.org/

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

4 0 8