

Control design via Bayesian Optimization with safety constraints

Xavier Bombois (CNRS, France), Marco Forgione (IDSIA, Lugano, Switzerland)

CT Identif, 19 January 2023

We wish to determine a parametrized controller $K(\theta)$ for an unknown true system $\mathcal S$

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of ${\mathcal S}$ is used to approximate V(heta)

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

イロト 不得 トイラト イラト 一日

We wish to determine a parametrized controller $\mathcal{K}(\theta)$ for an unknown true system \mathcal{S}

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of S is used to approximate $V(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

イロト 不得 トイヨト イヨト 二日

We wish to determine a parametrized controller $K(\theta)$ for an unknown true system $\mathcal S$

Control design: determine $K(\theta)$ minimizing a certain objective function $V(\theta)$ for the loop $[K(\theta) S]$

Since the true system S is unknown, $V(\theta)$ is unknown

Model-based control design: a model of S is used to approximate $V(\theta)$

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

イロト 不得 トイラト イラト 一日

Experiment-based control design: a model of $V(\theta)$ is learnt by performing multiple experiments on S with different $K(\theta)$

An experiment with $K(\theta)$ leads to a measure $\tilde{V}(\theta)$ of $V(\theta)$

From the data $(\theta_k, \tilde{V}(\theta_k))$ $(k = 1, ..., n_{it})$, a model of $V(\theta)$ can be determined/identified using e.g., a Gaussian Process

The successive experiments with θ_k ($k = 1, ..., n_{it}$) are generally determined via global optimization algorithms such as Bayesian Optimization

イロト 不得 トイラト イラト 一日

Some of these multiple experiments may however pose a safety issue (e.g., instability)

The issue of safe experimentation is generally addressed via regularity assumptions on $V(\theta)$

Here we propose an alternative approach based on a nominal model allowing to determine a safety zone for experimentation

- Some of these multiple experiments may however pose a safety issue (e.g., instability)
- The issue of safe experimentation is generally addressed via regularity assumptions on $V(\theta)$
- Here we propose an alternative approach based on a nominal model allowing to determine a safety zone for experimentation

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration i,

- **Q** Execute experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2** Compute the Gaussian Process model $\mathcal{V}_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ (k = 1, ..., i)
- **Solution** Construct acquisition function $A_i(\theta)$ using $\mathcal{V}_i(\theta)$ and its uncertainty

OMAXIMIZE $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $\mathcal{V}_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the smallest value of the final model $\mathcal{V}_{n_{it}}(\theta)$ (or the smallest $\tilde{\mathcal{V}}(\underline{\theta}_i)$), $\mathbf{x} \in \mathbf{x}$

X. Bombois

BO with safety constraints

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration *i*,

- **Q** Execute experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2** Compute the Gaussian Process model $\mathcal{V}_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ (k = 1, ..., i)
- **Solution** Construct acquisition function $A_i(\theta)$ using $\mathcal{V}_i(\theta)$ and its uncertainty
- **OMAXIMIZE** $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $\mathcal{V}_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the smallest value of the final model $\mathcal{V}_{n_{it}}(\theta)$ (or the smallest $\tilde{\mathcal{V}}(\underline{\theta}_i)$), \mathbf{x} ,

Classical Bayesian Optimization (without safety constraints)

Bayesian optimization minimizes $V(\theta)$ via a number n_{it} of iterations

At iteration i,

- **Q** Execute experiment with $K(\theta_i)$, measure $\tilde{V}(\theta_i)$
- **2** Compute the Gaussian Process model $\mathcal{V}_i(\theta)$ of $V(\theta)$ (and its uncertainty) using $(\theta_k, \tilde{V}(\theta_k))$ (k = 1, ..., i)
- **Solution** Construct acquisition function $A_i(\theta)$ using $\mathcal{V}_i(\theta)$ and its uncertainty
- **OMAXIMIZE** $A_i(\theta)$ to obtain next query point θ_{i+1}

 θ_{i+1} is generally a point where $\mathcal{V}_i(\theta)$ is small and/or where the uncertainty of $\mathcal{V}_i(\theta)$ is large (i.e., in regions of the θ -space where few θ has been tested).

After n_{it} iterations, θ_{opt} is then chosen as the tested θ_i leading to the smallest value of the final model $\mathcal{V}_{n_{it}}(\theta)$ (or the smallest $\tilde{\mathcal{V}}(\theta_i)$)

X. Bombois

BO with safety constraints

Classical Bayesian Optimization: example

iteration 4

 $\implies \theta_5 = -0.1$

< □ > < □ > < □ > < □ > < □ > < □ >

Classical Bayesian Optimization: example

iteration 6

$$\implies \theta_7 = -0.4$$

X. Bombois

CT Identif

∃ →

< 47 ▶

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to determine a safety zone Θ_{safe}

and we will ensure that only $heta\in \Theta_{\mathit{safe}}$ will be effectively tested on $\mathcal S$

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

< □ > < □ > < □ > < □ > < □ > < □ >

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to determine a safety zone Θ_{safe}

and we will ensure that only $heta\in \Theta_{\textit{safe}}$ will be effectively tested on $\mathcal S$

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

×4	D	
x	Rom	hole
<i>/</i> .	DOIII	DUIS

Imposing safety constraints

The BO algorithm may test $K(\theta)$ that pose safety concerns How to avoid that?

We will here use a nominal model M of the unknown dynamics S to determine a safety zone Θ_{safe}

and we will ensure that only $heta\in \Theta_{\textit{safe}}$ will be effectively tested on $\mathcal S$

To define Θ_{safe} , we use the rationale:

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

If $K(\theta)$ gives poor performance on M, then it should not be applied on S

$$\Theta_{safe} = \{ \ \theta \ | \ V_{M}(\theta) < V_{safe} \ \}$$

with $V_M(\theta)$ the performance measure corresponding to $V(\theta)$, but for the loop $[K(\theta) M]$ and V_{safe} a scalar defining an acceptable $V_M(\theta)$

We wish to minimize $V(\theta)$, but by testing only $K(\theta)$ with

$$\theta \in \Theta_{safe} = \{ \ \theta \ | \ V_{\mathcal{M}}(\theta) < V_{safe} \ \}$$

Modified optimization problem:

$$\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) \text{ if } V_M(\theta) < V_{safe} \\ V_M(\theta) \text{ if } V_M(\theta) \ge V_{safe} \end{cases}$$

If Bayesian Optimization is used to tackle this modified optimization problem, the GP will model $J(\theta)$ instead of $V(\theta)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We wish to minimize $V(\theta)$, but by testing only $K(\theta)$ with

$$\theta \in \Theta_{safe} = \{ \ \theta \ | \ V_{\mathcal{M}}(\theta) < V_{safe} \ \}$$

Modified optimization problem:

$$\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) \text{ if } V_M(\theta) < V_{safe} \\ V_M(\theta) \text{ if } V_M(\theta) \ge V_{safe} \end{cases}$$

If Bayesian Optimization is used to tackle this modified optimization problem, the GP will model $J(\theta)$ instead of $V(\theta)$.

$$\arg\min_{\theta \in \Theta} J(\theta) \qquad J(\theta) = \begin{cases} V(\theta) \text{ if } V_M(\theta) < V_{safe} \\ V_M(\theta) \text{ if } V_M(\theta) \ge V_{safe} \end{cases}$$

The GP will model $J(\theta)$ instead of $V(\theta)$.

For this purpose, at iteration *i*, $(\theta_i, \tilde{J}(\theta_i))$ will be collected with

$$ilde{J}(heta_i) = egin{cases} ilde{V}(heta_i) & ext{if } V_M(heta_i) < V_{safe} \ V_M(heta_i) & ext{if } V_M(heta_i) \geq V_{safe} \end{cases}$$

If the to-be-tested $\theta_i \notin \Theta_{safe}$, the *unsafe* experiment is replaced by the computation of $V_M(\theta_i)$

In order to stress even more the safety constraint, we will in fact consider the following constrained BO optimization problem:

$$\begin{split} & \arg\min_{\theta\in\Theta} J(\theta) \\ & \text{s.t. } V_{\mathcal{M}}(\theta) < V_{\textit{safe}}. \end{split}$$

which can be solved via a similar procedure (the constraint is also modeled as a GP)

11/19

Linear simulation example

$$c \xrightarrow{+} K(\theta) \xrightarrow{u} S \xrightarrow{v} y(t, \theta)$$

True system S described by $P(s) = \frac{10}{(s+10)(s+1)}$ with white noise v ($\sigma_v = 0.01$)

To be controlled by PID $K(s, \theta) = \frac{k(s+p_1)(s+p_2)}{s(s+4.2)} (\theta = (k, p_1, p_2))$

Model reference objective: $y(t, \theta)$ for unit step c(t) close to:

$$y_{des}(t) = rac{9}{s^2 + 4.2s + 9} c(t)$$
 $(t_r = 1 \ s \ \text{and} \ D = 5\%)$

Initial model $M(s) = \frac{12}{(s+8)(s+2)}$

Linear simulation example: $\tilde{V}(\theta)$ and Θ_{safe}

Experiment of 5 seconds on $[K(s, \theta) P(s)]$ with unit step c ($T_s = 0.025 s$)

$$\implies \tilde{V}(\theta) = T_s \sum_{n=1}^{200} (y(nT_s, \theta) - y_{des}(nT_s))^2$$

which is a measure of $V(\theta) = E\tilde{V}(\theta)$

Safety zone $\Theta_{safe} = \{ \theta \mid V_M(\theta) < V_{safe} \}$ defined with $V_{safe} = 0.1$ and

$$V_{M}(\theta) = \begin{cases} T_{s} \sum_{n=1}^{200} (y_{M}(nT_{s}, \theta) - y_{des}(nT_{s}))^{2} & \text{if } [K(s, \theta) \ M(s)] \text{ stable} \\ 100 \ V_{safe} & \text{otherwise.} \end{cases}$$

where $y_M(t, \theta) = \frac{M(s)K(s,\theta)}{1+M(s)K(s,\theta)}c(t)$

Linear simulation example: Bayesian Optimization with safety constraints

$$\begin{array}{ll} \arg\min_{\theta\in\Theta}J(\theta) & J(\theta) = \begin{cases} V(\theta) \ \textit{if} \ V_M(\theta) < 0.1 \\ V_M(\theta) \ \textit{if} \ V_M(\theta) \ge 0.1 \end{cases}$$
s.t. $V_M(\theta) < 0.1.$

We tackle this optimization problem by running 300 iterations of Bayesian Optimization initialized with $\theta_{init} = (0.75, 8, 2)$

 $K(heta_{ ext{init}})$ achieves $y_M(t, heta_{ ext{init}}) = y_{des}(t)$ i.e., $V_M(heta_{ ext{init}}) = 0$

Linear simulation example: results

- $y(t, \theta_{init})$ (blue) far from $y_{des}(t)$ (red)
- Optimized output $y(t, \theta_{opt})$ (black) almost equal to $y_{des}(t)$

From the 300 values of θ selected by the BO algorithm, 10% were outside Θ_{safe} and were thus not tested on $S \Longrightarrow$

- Experiments with unstable controllers avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 400x larger than for the tested θ

Linear simulation example: results

- $y(t, \theta_{init})$ (blue) far from $y_{des}(t)$ (red)
- Optimized output $y(t, \theta_{opt})$ (black) almost equal to $y_{des}(t)$

From the 300 values of θ selected by the BO algorithm, 10% were outside Θ_{safe} and were thus not tested on $S \Longrightarrow$

- Experiments with unstable controllers avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 400x larger than for the tested θ

Non-linear simulation example

The only difference is the true system ${\mathcal S}$ which is now an Hammerstein system:

 $y(t) = P(s) \operatorname{sat}(u(t))$

with the same $P(s) = \frac{10}{(s+10)(s+1)}$ and

$$sat(u(t)) = \begin{cases} u(t) & \text{if } u(t) \in [-1.5 \ 1.5] \\ 1.5 & \text{if } u(t) > 1.5 \\ -1.5 & \text{if } u(t) < -1.5 \end{cases}$$

 $\tilde{V}(\theta)$ will therefore be determined with an experiment on $[K(s, \theta) S]$ Safe BO algorithm run for 300 iterations

Non-linear simulation example: results

- $y(t, \theta_{init})$ (blue) far from $y_{des}(t)$ (red)
- $y(t, \theta_{opt})$ (black) close to $y_{des}(t)$
- $y(t, \theta_{opt})$ better than with ideal linear design using P(s) i.e., ignoring saturation (green)

From the 300 values of θ selected by the BO algorithm, 13% were outside Θ_{safe} and were thus not tested on $S \Longrightarrow$

- Experiments with controllers yielding a limit cycle avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 9x larger than for the tested θ

Non-linear simulation example: results

- $y(t, \theta_{init})$ (blue) far from $y_{des}(t)$ (red)
- $y(t, \theta_{opt})$ (black) close to $y_{des}(t)$
- $y(t, \theta_{opt})$ better than with ideal linear design using P(s) i.e., ignoring saturation (green)

From the 300 values of θ selected by the BO algorithm, 13% were outside Θ_{safe} and were thus not tested on $S \Longrightarrow$

- Experiments with controllers yielding a limit cycle avoided
- Average $\tilde{V}(\theta)$ for non-tested θ would have been 9x larger than for the tested θ

Conclusions

Safety constraint added to an experiment-driven controller calibration approach to guarantee safe exploration

Safety constraint based on a nominal model knowledge

Current/future work

• Adaptation of the model during the iterative process

More details at *https://hal.archives-ouvertes.fr/hal-03559979*

× /	D	
x	Rom	ihois.
· · ·	Dom	10013

Conclusions

Safety constraint added to an experiment-driven controller calibration approach to guarantee safe exploration

Safety constraint based on a nominal model knowledge

Current/future work

• Adaptation of the model during the iterative process

More details at https://hal.archives-ouvertes.fr/hal-03559979

2023 Spring School with M. Schoukens as guest lecturer

More details at https://spring-id-2023.sciencesconf.org/

< □ > < □ > < □ > < □ > < □ > < □ >