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Direct data-driven (DD) control

Controller ?yo(t) + u(t) y(t)

−

v(t) w(t)

Key question
How to design the controller directly from a set of I/O data?
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The relevance of DD control
Modeling is known to be the most
time-consuming step of a control
project (∼ 75% of total time)

Controller ?yo(t) + u(t) y(t)

−

v(t) w(t)

Number of publications on DD control over the years
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Our focus

Controller ?yo(t) + u(t) y(t)

−

v(t) w(t)

Shift from deterministic to stochastic DD predictive control
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Our main assumptions

Controller ?yo(t) + u(t) y(t)

−

v(t) w(t)

Unknown system: Linear Time Invariant (LTI){
x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) +Du(t) + v(t)

Process/measurement noise: white, zero mean

w ∼ wn(0,Γ2
w), v ∼ wn(0,Γ2

v), cov(w, v) = Γwv

Dataset: DNd = {ud(t), yd(t)}N
d

t=1

Input ud(t): persistently exciting of sufficient order
Set point: yo(t) = yo, ∀t ≥ 0
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Back to basics: the model-based problem

minimize
ū[0,L−1](t)

ȳ[0,L−1](t)

L−1∑
k=0

E[∥ȳk(t)− yo∥2Q] + ∥ūk(t)∥2R︸ ︷︷ ︸
ℓ(ūk(t),ȳk(t))

s.t. x̄k+1(t) = Ax̄k(t) + Būk(t) + �wk, k ∈ [0, L− 1)

ȳk(t) = Cx̄k(t) + Dūk(t) + �vk, k ∈ [0, L− 1)

�x0(t) = x(t)
ūk(t) ∈ U , E[ȳk(t)] ∈ Y , k ∈ [0, L− 1)

How to use data instead of model parameters ?

How to cope with noise ?

How to cope with unknown initial conditions ?

S. Formentin Virtual study day of the French Identification group
Data-driven predictive control of stochastic systems



Problem statement Deterministic DDPC Noise management The stochastic setting

Shifting from a model-based to a data-driven formulation

Controller ?yo(t) + u(t) y(t)

−

?u(t) y(t)

Goals
#1: Describe the predictive model of the system in a purely

input/output framework
#2: Express the initial conditions with inputs & outputs only
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Towards an input/output predictive model

Leveraging behavioral systems theory, the system dynamics can be expressed
as a combination of input/output trajectories

(as in e.g., Coulson et al., 2019; Berberich et al., 2021)

If a state-space model generates DNd = {ud(t), yd(t)}Nd

t=1{
x̄k(t+ 1) = Ax̄k(t) +Būk(t),

ȳk(t) = Cx̄k(t) +Dūk(t)

the data satisfy the following equation for a certain α(t)[
ū[0,L−1](t)
ȳ[0,L−1](t)

]
=

[
HL(u

d)
HL(y

d)

]
︸ ︷︷ ︸

Hankel matrices build
from data

α(t)
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Initial conditions as functions of inputs/outputs

x(t) = Aρx(t− ρ) + C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
For a stable system, we can go from an initial state...

x̄0(t) = x(t)

...to a past input/output trajectory[
ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
ρ ≥ n

(see, e.g., Willems et al., 2005, Moonen et al., 1989)
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Initial conditions as functions of inputs/outputs

x(t) = Aρx(t− ρ) + C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]

For a stable system, we can go from an initial state...

x̄0(t) = x(t)

...to a past input/output trajectory[
ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]

How to tune ρ if the actual order n of the system is unknown?
S. Formentin Virtual study day of the French Identification group
Data-driven predictive control of stochastic systems



Problem statement Deterministic DDPC Noise management The stochastic setting

Deterministic data-driven PC (1)

Substituting the previous relations into the predictive control problem...

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t)

L−1∑
k=0

∥ȳk(t)− yo∥2Q + ∥ūk(t)∥2R︸ ︷︷ ︸
ℓ(ūk(t),ȳk(t))

s.t.
[
ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

Features of the problem
Equivalent to the model-based problem, provided ρ is big enough

(Coulson et al., 2019)
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Deterministic data-driven PC (2)
Substituting the previous relations into the predictive control problem...

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t)

L−1∑
k=0

∥ȳk(t)− yo∥2Q + ∥ūk(t)∥2R︸ ︷︷ ︸
ℓ(ūk(t),ȳk(t))

s.t.
[
ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
,

[
ū[L−ρ,L−1](t)
ȳ[L−ρ,L−1](t)

]
=

[
0
yo

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

Features of the problem

#1: Equivalent to model-based provided ρ is big enough
#2: Stability & recursive feasibility are guaranteed

(Berberich et al., 2021)
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Back to basics: the model-based problem

minimize
ū[0,L−1](t)

ȳ[0,L−1](t)

L−1∑
k=0

E[∥ȳk(t)− yo∥2Q] + ∥ūk(t)∥2R︸ ︷︷ ︸
ℓ(ūk(t),ȳk(t))

s.t. x̄k+1(t) = Ax̄k(t) + Būk(t) + �wk, k ∈ [0, L− 1)

ȳk(t) = Cx̄k(t) + Dūk(t) + �vk, k ∈ [0, L− 1)

�x0(t) = x(t)
ūk(t) ∈ U , E[ȳk(t)] ∈ Y , k ∈ [0, L− 1)

How to use data instead of model parameters

How to cope with noise ?

How to cope with unknown initial conditions ?
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Challenges with noisy outputs

Controller ?yo(t) + u(t) y(t)

−

v(t)

How is the “true” system changed?{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t)

The input and the model do not uniquely define the output trajectory
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DDPC under bounded measurement noise
Starting from the nominal formulation with terminal constraints

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t),σ(t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λαε̄∥α(t)∥2 + λσ∥σ(t)∥2

s.t.
[

ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t) + σ(t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
,

[
ū[L−ρ,L−1](t)
ȳ[L−ρ,L−1](t)

]
=

[
0
yo

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

∥σk(t)∥∞ ≤ ε̄(∥α(t)∥1 + 1), k ∈ [−ρ, L− 1]

Practical stability and recursive feasibility are guaranteed by
regularizing α(t) and introducing a slack

(Berberich et al., 2021)
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DDPC under bounded measurement noise
Starting from the nominal formulation with terminal constraints

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t),σ(t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λαε̄∥α(t)∥2 + λσ∥σ(t)∥2

s.t.
[

ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t) + σ(t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
,

[
ū[L−ρ,L−1](t)
ȳ[L−ρ,L−1](t)

]
=

[
0
yo

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

∥σk(t)∥∞ ≤ ε̄(∥α(t)∥1 + 1), k ∈ [−ρ, L− 1]

#1: How to tune the regularization parameters?
#2: How to cope with the changes in the penalties induced by the

regularization?
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An alternative: α-regularization
Starting from the nominal formulation w/o terminal constraints

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λ1∥α(t)∥1 + λ2∥(I −Π)α(t)∥2

s.t.
[
ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

(I − Π): orthogonal projector onto the kernel of the initial conditions and future outputs

Noise is coped with by shrinking α via 1-norm regularization and
exploiting subspace identification inkling

(Dörfler et al., 2021)
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An alternative: α-regularization
Starting from the nominal formulation w/o terminal constraints

minimize
ū[0,L−1](t),α(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λ1∥α(t)∥1 + λ2∥(I −Π)α(t)∥2

s.t.
[
ū[−ρ,L−1](t)
ȳ[−ρ,L−1](t)

]
=

[
HL+ρ(u

d)

HL+ρ(y
d)

]
α(t)[

ū[−ρ,−1](t)
ȳ[−ρ,−1](t)

]
=

[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

(I − Π): orthogonal projector onto the kernel of the initial conditions and future outputs

#1: How to tune the regularization parameters?
#2: How to cope with the changes in the penalties induced by the

regularization?
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Shifting to a stochastic framework

Controller ?yo(t) + u(t) y(t)

−

v(t) w(t)

How are data actually generated?{
x(t+ 1) = Ax(t) +Bu(t) + w(t)
y(t) = Cx(t) +Du(t) + v(t)

The input and the model do not define uniquely the output trajectory

S. Formentin Virtual study day of the French Identification group
Data-driven predictive control of stochastic systems



Problem statement Deterministic DDPC Noise management The stochastic setting

From the model to its equivalent innovation form

For a better understanding on where the noise enters in the picture...

Initial model{
x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) +Du(t) + v(t)

Innovation form{
x(k + 1) = Ax(k) +Bu(k) +Ke(t)

y(k) = Cx(k) +Du(k) + e(k)

Shifting to the prediction form it holds...
The maximum eigenvalue λmax of A−KC satisfy |λmax| < 1
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Initial conditions as functions of inputs/outputs with noise

x(t) = (A−KC)ρx(t− ρ) + C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]

The past trajectories u[t−ρ,t−1] and y[t−ρ,t−1] are noisy

x(t) = C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
+ O(|λmax|ρ)︸ ︷︷ ︸

→0 for ρ→∞
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Initial conditions as functions of inputs/outputs with noise

x(t) = (A−KC)ρx(t− ρ) + C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]

x(t) = C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
+ O(|λmax|ρ)︸ ︷︷ ︸

→0 for ρ→∞

Link between the error performed in reconstructing x(t) from
input/output data and ρ

Trade-off: ρ must be low due to computational/memory constraints
and predictor variance
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Initial conditions as functions of inputs/outputs with noise

x(t) = (A−KC)ρx(t− ρ) + C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]

x(t) = C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
+ O(|λmax|ρ)︸ ︷︷ ︸

→0 for ρ→∞

Tune ρ with AIC or other standard criteria in system identification
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Recasting the model with subspace identification

We decompose the Hankel matrices HL+ρ(u
d) and HL+ρ(y

d)

Past

ZP =

[
UP

YP

]
Ü

UP=H[0,ρ−1],M (ud)

YP=H[0,ρ−1],M (yd)

Future

UF = H[ρ,L+ρ−1],M (ud)

YP = H[ρ,L+ρ−1],M (yd)

EF = H[ρ,L+ρ−1],M (ed)

Future output sequence

YF = Γ Xρ︸︷︷︸
CZP+O(|λmax|ρ)

+HdUF +HsEF
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Removing future noises by projection

Future outputs based on past inputs/outputs and future inputs

YF = Γ[CZP +O(|λmax|ρ)] +HdUF +HsEF

Projecting the future outputs onto the row span of ZP and UF

ΠZP ,UF
(YF ) = ŶF = ΓCZP +HdUF +Hs ΠZP ,UF

(EF )︸ ︷︷ ︸
O(
√

log(log(Nd))/Nd)

Data-driven predictive model

ŷ[t,t+L−1]︸ ︷︷ ︸
ŶFα

= C
[
u[t−ρ,t−1]

y[t−ρ,t−1]

]
︸ ︷︷ ︸

ξ(t)=ZPα

+Hd u[t,t+L−1]︸ ︷︷ ︸
UFα

+ε(ρ,Nd), ∀α
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Towards a constrained SPC formulation

Theorem (Breschi et al., 2022)

If the input sequence {ud(t)}Nd

t=1 is persistently exciting, for any past
input/output trajectory ξ(t), future input sequence u[t,t+L−1], it holds
that

ŷ[t,t+L−1] = ŶFα
⋆ +OP

(
1√
Nd

)
and

α⋆ satisfies
[

ξ(t)
u[t,t+L−1]

]
=

[
ZP

UF

]
α

Recasting the control loss

E
[
∥yk(t)− yo∥2Q

]
= ∥E [yk(t)]︸ ︷︷ ︸

ŷk(t)

−yo∥2Q + E
[
∥yk(t)− E [yk(t)] ∥2Q

]︸ ︷︷ ︸
independent from uk(t)
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Constrained SPC

Exploiting the previous relations...

minimize
ū[0,L−1](t)

ȳ[0,L−1](t)

L−1∑
k=0

∥ȳk(t)− yo∥2Q + ∥ūk(t)∥2R︸ ︷︷ ︸
ℓ(ūk(t),ȳk(t))

s.t. α⋆ =

[
ZP

UF

]† [
ξ(t)

ū[0,L−1](t)

]
ȳ[0,L−1](t) = ŶFα

⋆

ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

Equal to...
Existing subspace predictive control schemes

(Favoreel et al., 1999; Fiedler et al., 2021)

S. Formentin Virtual study day of the French Identification group
Data-driven predictive control of stochastic systems



Problem statement Deterministic DDPC Noise management The stochastic setting

Constrained SPC

Exploiting the previous relations...

minimize
ū[0,L−1](t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t))

s.t. α⋆ =

[
ZP

UF

]† [
ξ(t)

ū[0,L−1](t)

]
ȳ[0,L−1](t) = ŶFα

⋆

ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)
(Dörfler et al., 2021)

Equivalent to...
The regularized approach using shrinkage and subspace identification

inkling, for λ1 = 0 and λ2 → ∞
(Breschi et al., 2022)
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Constrained SPC

Exploiting the previous relations...

minimize
ū[0,L−1](t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t))

s.t. α⋆ =

[
ZP

UF

]† [
ξ(t)

ū[0,L−1](t)

]
ȳ[0,L−1](t) = ŶFα

⋆

ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)
(Dörfler et al., 2021)

We get an indication on how to tune the regularization parameters for
regularized DDPC schemes

S. Formentin Virtual study day of the French Identification group
Data-driven predictive control of stochastic systems



Problem statement Deterministic DDPC Noise management The stochastic setting

γ-DDPC: towards a numerically efficient implementation

Starting again from the approaches where α(t) is optimized

How can we exploit the previous results to enhance the efficiency of
these schemes?

The steps we perform are:

#1: LQ decomposition of the Hankel matricesZP

UF

YF

α(t)=

L11 0 0
L21 L22 0
L31 L32 L33

Q1

Q2

Q3

α(t)=

L11 0 0
L21 L22 0
L31 L32 L33

γ1(t)γ2(t)
γ3(t)


#2: set γ3(t) = 0 (Results stemming from the projections)

(Breschi et al., 2022)
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The steps of γ-DDPC

Since L11 0
L21 L22

L31 L32

[
γ1(t)
γ2(t)

]
=

 ξ(t)
ū[0,L−1](t)
ȳ[0,L−1](t)


Account for the initial conditions

γ⋆
1 (t) = L−1

11 ξ(t)

We can decouple the problem of fitting the initial conditions to that of
optimizing the control action
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The steps of γ-DDPC

Since L11 0
L21 L22

L31 L32

[
γ1(t)
γ2(t)

]
=

 ξ(t)
ū[0,L−1](t)
ȳ[0,L−1](t)


Satisfying constraints

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t))

s.t.
[
ū[0,L−1](t)

ȳ[0,L−1](t)

]
=

[
L21 L22

L31 L32

] [
γ⋆
1 (t)
γ2(t)

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)
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The steps of γ-DDPC
Account for the initial conditions

γ⋆
1 (t) = L−1

11 ξ(t)

Satisfying constraints

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t))

s.t.
[
ū[0,L−1](t)

ȳ[0,L−1](t)

]
=

[
L21 L22

L31 L32

] [
γ⋆
1 (t)
γ2(t)

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

The error in using the data-driven predictive model is linked to the
number of data and the choice of ρ

(Breschi et al., 2022)
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Benchmark example: γ-DDPC vs oracle
Benchmark example

x(t+1)=

[
0.7326 −0.0861

0.1722 0.9909

]
x(t)+

[
0.0609

0.0064

]
u(t)+

[
0.9089

0.4838

]
e(t)

y(t)=
[
0 1.4142

]
x(t)+e(t)

e ∼ N (0, 0.01) (Bemporad et al., 2002)

Input

0 10 20 30 40

-2

-1

0

1

2

Output

0 10 20 30 40
-1

0

1

2

¯SNR = 11 dB
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Benchmark example: γ-DDPC vs oracle

Input

0 10 20 30 40

-2

-1

0

1

2

Output

0 10 20 30 40
-1

0

1

2

The mean inputs and outputs over 30 Monte Carlo simulations (- -) are
close to the ones resulting from using the oracle MPC (-)

¯SNR = 11 dB
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Benchmark example: γ-DDPC vs 2-norm on γ2

Benchmark example
x(t+1)=

[
0.7326 −0.0861

0.1722 0.9909

]
x(t)+

[
0.0609

0.0064

]
u(t)

y(t)=
[
0 1.4142

]
x(t)+e(t)

e ∼ N (0, 0.01) (Bemporad et al., 2002)

Are there benefits in introducing β∥γ2(t)∥2 in our cost?

Attained vs oracle cost Attained vs oracle input cost
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Benchmark example: γ-DDPC vs 2-norm on γ2

Are there benefits in introducing β∥γ2(t)∥2 in our cost?

Attained vs oracle cost Attained vs oracle input cost

The lower β, the more the closed-loop behavior over 30 Monte Carlo
simulation resembles the one induced by the oracle MPC (J = 22.34 and

Ju = 55.46)
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Benchmark example: DD vs MB

Output cost Input cost

Closed-loop validation tests (SNR = 18 dB): performance indexes vs
predictive strategy over 30 Monte Carlo predictors
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Benchmark example: γ-DDPC vs Nd

What is the effect induced by the number of available samples?
Attained vs oracle cost Attained vs oracle input cost

The larger is the dataset, the more the closed-loop behavior over 30
Monte Carlo simulation resembles the one induced by the oracle MPC
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Can we make γ-DDPC more “robust”?

What if Nd is low?

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λσ∥σ(t)∥2

s.t.
[

ū[0,L−1](t)

ȳ[0,L−1](t) + σ(t)

]
=

[
L21 L22

L31 L32

] [
γ⋆
1 (t)
γ2(t)

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

We add a slack to account for the entity of our approximations
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Tunable parameters and their interpretation

Also this scheme requires some hyper-parameters to be tuned

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + λσ∥σ(t)∥2

s.t.
[

ū[0,L−1](t)

ȳ[0,L−1](t) + σ(t)

]
=

[
L21 L22

L31 L32

] [
γ⋆
1 (t)
γ2(t)

]
[
ū[L−n,L−1](t)

ȳ[L−n,L−1](t)

]
=

[
0
yo

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

I λσ depends on our dataset and the choice of ρ Ü λσ ∝ Nd

ρ log(log(Nd))

I n should leave enough freedom for the optimization of the input
Ü n < ρ (still greater or equal to the order of the system)
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An alternative regularization scheme

Non-asymptotic behaviour

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + β2∥γ2∥2

s.t.
[
ū[0,L−1](t)

ȳ[0,L−1](t)

]
=

[
L21 L22

L31 L32

] [
γ⋆
1 (t)
γ2(t)

]
[
ū[L−n,L−1](t)

ȳ[L−n,L−1](t)

]
=

[
0
yo

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

I β2 now has a different role: to keep the norm of γ2 small (with
γ3 = 0)

I In fact, var(error) ≃ T
∥γ∗

1∥
2+∥γ∗

2 (β2)∥2

N (tunable via linear search)
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An alternative regularization scheme

Non-asymptotic behaviour

minimize
ū[0,L−1](t),γ2(t)

ȳ[0,L−1](t)

L−1∑
k=0

ℓ(ūk(t), ȳk(t)) + β3∥γ3∥2

s.t.
[
ū[0,L−1](t)

ȳ[0,L−1](t)

]
=

[
L21 L22 0
L31 L32 L33

]γ⋆
1

γ2
γ3


[
ū[L−n,L−1](t)

ȳ[L−n,L−1](t)

]
=

[
0
yo

]
ūk(t)∈ U , ȳk(t) ∈ Y, k ∈ [0, L− 1)

I β3 now has a different role: to keep the norm of γ3 small. In fact,
var(error) ≃ L33γ3 (linear search: ∥γ∗

3 (β3)∥2 ≃ T
∥γ∗

1∥
2+∥γ∗

2 (β3)∥2

N )
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Benchmark example: performance and optimal coefficients

Optimal coefficients in case of Nd = 250

Practically indistinguishable from oracle-type tuning based on off-line
closed-loop experiments.
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Conclusions

Existing approaches for the design of predictive controllers from data:

Deterministic setting
Measurement noise only

For the stochastic setting, we proposed a numerically efficient approach
(γ-DDPC)

Decoupling initial conditions’ fitting and control design
Reducing the number of optimization variables
Regularization can be tuned off-line
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Conclusions

Existing approaches for the design of predictive controllers from data:

For the stochastic setting, we proposed a numerically efficient approach
(γ-DDPC)

Ongoing works:

Terminal ingredients and stability guarantees
Hyper-parameters tuning
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Thank you!
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