

UNIVERSITÉ DE LORRAINE

CNIS

Artificial Intelligence Techniques applied to Aerodynamics and Ballistics

12/05/2022

Alain UWADUKUNZE

Marie ALBISSER (ISL), Cedric DECROCQ (ISL) Marion GILSON (CRAN), Xavier BOMBOIS (CNRS)

Bundesministerium der Verteidigung

Summary

- Prediction of experimental conditions using machine learning
 - Context
 - Data processing
 - Machine learning
 - Results
- Artificial Intelligence applied to aerodynamics
 - Thesis subject
 - Aerodynamic database
 - Aerodynamic predictions
 - Geometry design

French-German Research Institute of Saint-Louis

Prediction of experimental conditions using Machine Learning

Context

User requirements, objectives and experimental framework

Aerodynamic testing

Measurements of Velocities, Accelerations, Pressures... Over 2100 samples

•

ng to ISO 16016

Context

Study on launchers 91L100 and 105L33

- Predict experimental values (Initial velocity, Pressure, Mass of powder) → smooth running of experiments
 - Functions that will give the experimental values

Other tools to determine these experimental parameters : IntBal Predictions and Ami Simulations

 V_0 : Initial Velocity, M_{acc} : Accelerated mass, M_{powder} : Powder mass

Data processing

Data processing and analyze

Data processing

www.isl.eu

Model Identification

Algorithms, evaluation factors and validation method

Algorithm choice

Criteria

- Capable of dealing with non linear function
- Efficient to process few data

Possibilities

- Support Vector Regression
- Kernel Ridge Regression
- Gaussian Process Regression
- Multi Layer Perceptron
- Polynomial Regression

Least square method for linear regression

Ridge Regression

If H is a **RKHS** then according to the **Representer Theorem** the form of the solution is :

 $f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$ with α a parameter vector $\alpha = [\alpha_1, ..., \alpha_n]$

$$\hat{\alpha} = \arg\min_{\alpha \in \mathbb{R}} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} \alpha_j K(x_j, x_i) \right)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_j, x_i)$$

 $\hat{\alpha} = (K + \lambda I)^{-1} y$

RKHS : Reproducing Kernel Hilbert Space

https://mlweb.loria.fr/book/en/kernelridgeregression.html

Kernel Ridge Regression (KRR) algorithm

KRR with Polynomial kernel of order γ

$$f(x) = \sum_{i=1}^{n} \alpha_i (x_i x + 1)^{\gamma}$$

KRR with Gaussian kernel

$$f(x) = \sum_{i=1}^{n} \alpha_i e^{(\frac{-(x-x_i)^2}{2\sigma^2})}$$

https://mlweb.loria.fr/book/en/kernelridgeregression.html

Evaluation factors

according to ISO 16016

- All

ISL 2022 -

Validation

Predictions of initial velocity, chamber pressure, mass of powder and application

91L100 and 105L33 Launchers

Initial Velocity V₀, Pc and Mpowder

$V_0 = f(M_{acc}, M_{powder})$						
Evaluation factor	91L100		105L33			
Errors	metric (m/s)	% w.r.t. mean	metric (m/s)	% w.r.t. mean		
RMSE	16	2%	28	2.7%		
MAE	13	1.6%	22	2.1%		

P _c = f(M _{acc} , M _{powder})						
Evaluation factor	ctor 91L100 105L33					
Errors	metric (bar)	% w.r.t. mean	metric (bar)	% w.r.t. mean		
RMSE	21	7%	76	9.5%		
MAE	15	5.2%	52	6.5%		

$M_{powder} = f(M_{acc}, V_0)$						
Evaluation factor	91L100		105L33			
Errors	metric (g)	% w.r.t. mean	metric (g)	% w.r.t. mean		
RMSE	20	2.7%	36	3.2%		
MAE	16	2.2%	29	2.6%		

Parameters		Proximity to real values				
		ML Prediction		IntBal Predictions		
Macc (g)	Mpowder (g)	Pc	Vo	Pc	Vo	
1519	310	88%	95%	50%	93%	
1613	580	97%	99%	80%	99%	
1552	1000	97%	99%	86%	98%	
2167	1400	97%	99%	93%	99%	

d to ISL according to ISO 16016

© ISL 2022 – All righ

Comparison with IntBal

THT.

Conclusions on experimental conditions predictions

Advantages and limitations of Machine learning

Conclusions

Advantages

- Physical knowledge coherency
- Knowledge on launchers limits
- As precise as Interior ballistics softwares
 - Needs less knowledge

Limitations

- Poor precision for cases with few data
- Risk of incoherence

Overview

Artificial Intelligence applied to aerodynamics

Database creation and Aerodynamic predictions

Data gathering and generation from different sources

Aerodynamic database creation (fin, spin and drag stabilized)

6016

www.isl.eu

Data type and tools

- Projectile geometries
- Aerodynamic characteristics

Data type

- Numerical
- Images, STL files, CAD ...

Tools

- SQlite3
- DB Explorer for SQLite
- Python

CX0	CX2	CNa	Cma	Cmq
0.304295	3.20889	6.31632	-6.7449	-172.144
0.305534	3.20889	6.51464	-7.27177	-174.923
0.30617	3.20889	6.61634	-7.53709	-176.348
0.318307	3.44889	6.76396	-7.86649	-178.324
0.324376	3.56889	6.83776	-8.02921	-179.312
0.330445	3.68889	6.91157	-8.1906	-180.3

Prodas Macro Output Generated on 11/03/2022 11:06:07

TESTING SCRIPT INTERFACE

PROJ CALIBER (MM) = 28

ISL FINNER 4 REC	TANGULAR 28_10_	15_5.82_1_1_0_0.	.5_0
NOSE-BODY-TOTAL	LENGTH(CAL) = 1	3.80 5.20 10.00	
MASS IX	IY		
0.318474	3.0883E-05	1.06834E-03	
Data Table AEROD	YNAMICS BASICAE	ROS	
Mach C	X0 C	X2 C)	(4
.1000000E-01	.3042950E+00	.3208890E+01	.0000000E+00
.400000E+00	.3055340E+00	.3208890E+01	.0000000E+00
.600000E+00	.3061700E+00	.3208890E+01	.0000000E+00
.7000000E+00	.3183070E+00	.3448890E+01	.000000E+00
.7500000E+00	.3243760E+00	.3568890E+01	.000000E+00
.800000E+00	.3304450E+00	.3688890E+01	.000000E+00
.8500000E+00	.3623990E+00	.3927410E+01	.0000000E+00
.8750000E+00	.3783760E+00	.4046680E+01	.0000000E+00
.900000E+00	.3943530E+00	.4165940E+01	.000000E+00
.9250000E+00	.4173050E+00	.4407630E+01	.000000E+00
.9500000E+00	.4402570E+00	.4649330E+01	.0000000E+00
.9750000E+00	.4849520E+00	.5006240E+01	.0000000E+00
.1000000E+01	.5296470E+00	.5363150E+01	.000000E+00
.1025000E+01	.5436460E+00	.5722730E+01	.0000000E+00
.1050000E+01	.5576460E+00	.6082310E+01	.0000000E+00
.1100000E+01	.5407730E+00	.6803380E+01	.0000000E+00
.1200000E+01	.5026490E+00	.7725380E+01	.0000000E+00
.1350000E+01	.4790190E+00	.7153080E+01	.0000000E+00
.1500000E+01	.4538690E+00	.6560800E+01	.0000000E+00
.1750000E+01	.4115070E+00	.5946910E+01	.000000E+00

ISO 16016

www.isl.eu

ding to ISO 16016

- All

ISL 2022 -

T-5T-

Prediction of aerodynamic coefficients for a finner projectile

		Inpu	ts	Out	tputs
		Х	Geometry + Mach	Y	Coefficients
	X ₀	Fins	Y ₀	CX ₀	
Coefficients = f(Geometry)	try. Mach)	X ₁	configuration	Y_1	CX ₂
		X ₂		Y ₂	CN_{α}
		X ₃		Y ₃	Cm_{α}
		X ₄	Body	Y ₄	Cm _q
		X ₅	Configuration	Y_5	Cl _p
		X ₆	Mach	Y_6	Cl_δ
			number		
$N1_{j} = \max(0, \sum_{i=0}^{6} (W1_{ij}X_{i} + b1_{j}))$	$N2_k = \max(0, \sum_{j=0}^{127} (W2_{jk}N_j + b))$	92 _k))	$\boldsymbol{Y_l} = (\sum_{k=0}^{127} \boldsymbol{N})$	$V2_k$	* W3 _{kl}) + b3 _l
R ² : Coefficient of determination					

Prediction of aerodynamic coefficients for a finner projectile

Aerodynamic predictions

Prediction of aerodynamic coefficients for a finner projectile

ding to ISO 16016

IIA

ISL 2022 -

5016

2022

www.isl.eu

Geometry optimization : Flight Scenario

Design objective : Stable geometry with the minimum drag along the trajectory (Mach 5 to Mach 2) with the following geometry constraints

Geometry constraints

Parameter	Boundaries	
	Min	Max
X ₀ Total Length () (cal)	5	20
X ₁ Nose Angle () (°)	5	50
X ₂ Fins height (cal)	2	3
X_{3} Fins width (cal)	1	5
X ₄ Number of fins	2	6
X_{s} Position of fins (cal)	0	3

SO 16016

Geometry optimization : Aerodynamic Coefficients

Coefficient	Description
C _{X0,x2}	Axial force coefficients
$C_{N\alpha}$	Normal force coefficient slope
C _{mq}	Pitch damping coefficient
C _{mα}	Pitch moment coefficient
C _{Ip}	Roll damping coefficient
C _{Iδ}	Roll moment coefficient due to fin cants

Drag

- ➢ Minimum C_{x0} → Lowest drag (for zero angle of attack)
- Stability

- \succ C_{mα} < 0 → Static stability
- $> C_{mq} < 0 \rightarrow$ Dynamic stability

- Knowledge on Coeffs
 - \succ Maximum C_{x0} is at lowest Mach number
 - \succ Highest $C_{m\alpha}$ and C_{mq} are at highest Mach number

Geometry optimization : optimization problem

$$N1_{j} = \max(0, \sum_{i=0}^{6} (W1_{ij}X_{i} + b1_{j})) \qquad N2_{k} = \max(0, \sum_{j=0}^{128} (W2_{jk}N1_{j} + b2_{k})) \qquad \mathbf{Y}_{l} = (\sum_{k=0}^{128} N2_{k} * W3_{kl}) + b3_{l}$$

Inputs		Outputs		
Х	Geometry + Mach	Y	Coefficients	
X ₀	Fins	Y ₀	CX ₀	
X ₁	configuration	Y_1	CX ₂	
X ₂		Y ₂	CN_{α}	
X ₃		Y ₃	Cm _α	
X ₄	Body	\mathbf{Y}_4	Cm _q	
X ₅	Configuration	Y_5	Cl _p	
Х ₆	Mach number	Y ₆	Cl_δ	

SO 16016

ISL 2022

Geometry optimization : Solution

$$\widehat{X}_{0\to 5} = Arg Min_{X_{0\to 5}} (\frac{1}{4} \sum_{M=2}^{5} Y_0(X_6 = M))$$

Subject to :

 $Y_3(X_6=5) \le -10$ $Y_4(X_6=5) \le -100$ $Y_0(X_6=5) > 0$

Python library Scipy optimization tools

- Method : Sequential Least Squares Programming
 - Minimize a function subject to constraints

Parameter	Boundaries		Optimal
	Min	Max	Solution
X ₀ Total Length (cal)	5	20	9
X ₁ Nose Angle (°)	5	50	10
X ₂ Fins height (cal)	2	3	2
X ₃ Fins width (cal)	1	5	2
X ₄ Number of fins	2	6	2
X_5 Position of fins (cal)	0	3	0

Thank you for attention! Any questions ?

Contact:

Alain.Uwadukunze@isl.eu

Aerodynamics and Exterior Ballistics group (ABX)

