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MOTIVATIONS AND
FRAMEWORK



PhD thesis with Michelin

• Future autonomous vehicles will require well-developed Ad-
vanced Driver Assistance Systems (ADAS) to assist human
beings in driving.
• One path chosen by Michelin for ADAS improvement con-

sists in providing the ADAS with information related to the
state of the road.
• Such information is included in the grip potential quantity.
• Benefits for passenger security (to name a few) are

detection of roads with low-grip area,
evaluation of the driving conditions,
reduction of the impact of rear end collisions.
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Problem formulation

• The grip potential is

µmax = max

(√
F 2
x + F 2

y

Fz

)
,

i.e., the maximum effort a tire can generate before sliding
on the road.
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Problem formulation (cont’d)

Problem
Estimate the grip potential under standard driving conditions
from sensors fitted on production vehicles.
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Problem formulation (cont’d)

• Getting (noisy) data requires to measure the friction µ and
the slip ratio s.
• No dedicated sensors exist on production vehicles.
• These signals must be estimated knowing that, for the lon-

gitudinal dynamics,

µ =
Fx

Fz

,

s =
ωRrol − vx

max (ωRrol − vx)
.

• A Kalman filter is suggested to reconstruct the components
of µ and s accurately.
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KALMAN FILTERING:
A REMINDER



Toy example

• Let us assume we want1 to determine from remote noisy
measurements the position and speed (state) of a cart mov-
ing straightforward.

1See Understanding the basis of the Kalman filter via a simple and
intuitive derivation, R. Faragher, IEEE Signal Processing Magazine, 2012.
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Toy example (cont’d)

• We need
a model of the cart dynamics,
a model of the measuring process,
a description of the noise and uncertainties acting on the
system.

• Because we get new measurements every Ts, most of the
Kalman filters

are based on dynamical systems discretized in the time
domain,
can be updated recursively (only the estimated state from
the previous time step and the current measurement are
needed to compute the estimate for the current state).

• Beside estimating the state vector recursively, the Kalman
filters propagate and update its uncertainty as soon as new
noisy measurements are available.
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Toy example (cont’d)
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Toy example (cont’d)
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Toy example (cont’d)
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Toy example (cont’d)
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Discrete time linear Kalman filter

• The standard discrete time linear Kalman filter considers
models evolving as follows

xk+1 = Fkxk +Gkuk +wk,

yk = Hkxk + vk,

where, for k ∈ T = {0, · · · , N − 1},
vk ∈ Rny×1 stands for a time sample of the observation
or output measurement noise sequence (vk)k∈Z,
wk ∈ Rnx×1 stands for a time sample of the process noise
sequence (wk)k∈Z,

• The sequences (vi)i∈T and (wi)i∈T are used to describe
the noise acting on the real system,
the (in)accuracy of the model representation,
the confidence we have in the model and the measure-
ments.
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Discrete time linear Kalman filter

• Let us consider a system, the behavior of which is governed
by the vector difference equation

xk+1 = Fkxk +Gkuk + wk,

where Fk, Gk and uk are assumed to be perfectly known
while the initial state and its symmetric positive definite
covariance are defined as follows

E {x0} = x0,

E
{

(x0 − x0) (x0 − x0)
>
}

= X0 � 0.

G. Mercère et al Noise covariance matrix estimation 12 May 2022 13 / 48



Discrete time linear Kalman filter (cont’d)

• Let us assume that the process disturbances can be de-
scribed by a zero mean white noise with a finite and sym-
metric covariance matrix satisfying

E {wk} = 0,

E
{
wkw

>
j

}
= Wkδkj, Wk � 0.

• Then, the uncorrected state and error covariance matrix
propagate from the previous corrected estimates as follows

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1,

X−k = Fk−1X
+
k−1F

>
k−1 +Wk−1,

where the notations − and + stand for "before and after
new measurements".
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Discrete time linear Kalman filter (cont’d)

• Once a new measurement is available, i.e., once we mea-
sure

yk = Hkxk + vk,

where Hk is known and by assuming that the output dis-
turbances are also described by a zero mean white noise
(with finite and symmetric covariance matrix) uncorrelated
with the process noise, i.e.,

E {vk} = 0,

E
{
vkv

>
j

}
= Vkδkj, Vk � 0,

E
{
vkw

>
j

}
= 0, for all k and j,

we can first update the Kalman gain

Kk = X−k H
>
k

(
HkX

−
k H

>
k + Vk

)−1
.
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Discrete time linear Kalman filter (cont’d)

• The state estimate is updated as follows

x̂+k = x̂−k +Kk(yk −Hkx̂
−
k ),

while the error covariance estimate update satisfies

X+
k = (Inx×nx −KkHk)X−k .
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Discrete time linear Kalman filter (cont’d)

• The state estimate is updated as follows

x̂+k = x̂−k +Kk(yk −Hkx̂
−
k ),

while the error covariance estimate update satisfies

X+
k = (Inx×nx −KkHk)X−k .

• In order to get reliable results, the Kalman filter requires
input and output measurements,
matrices Fk, Gk andHk generated from (a discretization
and linearization of) the physical equations governing the
system behavior,
values for Vk and Wk, k ∈ T.
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Basic idea of our solution

Time invariant conditions
In the sequel, for k ∈ T,

Fk = F , Gk = G, Hk = H , Vk = V , Wk = W .

• Because the matrices V and W are used to describe the
confidence we have in the model and the measurements,
we aim at determining them by comparing

the model used in the Kalman filter,
a model estimated from the available data sets.

• Herein, the data driven model learning solution is a sub-
space based model identification approach.
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Notations interlude...

• For any vector rk ∈ Rnr×1 and parameters M , i and ` ∈
N+
∗ , we define

ri,M =


ri
ri+1
...

ri+M−1

 ∈ RMnr×1,

Ri,M =
[
ri ri+1 · · · ri+M−1

]
∈ Rnr×M ,

and the block Hankel matrix as follows

Ri,`,M =


ri ri+1 · · · ri+M−1
ri+1 ri+2 · · · ri+M
...

... . . . ...
ri+`−1 ri+` · · · ri+M+`−2

 ∈ R`nr×M .
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Basic idea of our solution (cont’d)

• The subspace based model learning methods yield esti-
mates of xt, t ∈ {f, · · · , N − 1}×Ts, and {F ,G,H} up
to a similarity transformation.
• We can thus estimate2[

Ŵf,M−1

V̂f,M−1

]
=

[
X̂f+1,M

Yf,M−1

]
−
[
F G
H 0

] [
X̂f,M−1
Uf,M−1

]
,

and[
V̂ Ŝ

Ŝ> Ŵ

]
= lim

M→∞

1

M

[
Ŵf,M−1

V̂f,M−1

] [
Ŵ>

f,M−1 V̂ >f,M−1

]
.

2We have M = N − f .
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SUBSPACE STATE
SPACE MODEL

IDENTIFICATION: A
REMINDER



Problem formulation

• Subspace model learning (SML) methods mainly focus on
state space models of finite dimensional linear time invari-
ant causal and discrete time dynamical systems described
by

xk+1 = Axk +Buk +wk, (1a)
yk = Cxk + vk. (1b)

where k ∈ T whereas the noise sources are assumed to be
realizations of zero mean white noise statically independent
of the input sequence whereas

E
[[

vi
wi

] [
v>j w>j

]]
=

[
V S
S> W

]
δij. (2)
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Problem formulation (cont’d)

• By assuming that
A1 the input vector sequence is quasi stationary and exciting

of sufficient order,
A2 the pair (A,C) is observable and the pair (A,

[
B V 1/2

]
)

is reachable,
standard SML solutions aim at estimating consistently

the order nx of the system,
(A,B,C) up to a similarity transformation,
K such that an approximated minimum variance estimate
of xk, k ∈ T, can be reconstructed.
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Innovation form

• Under Assumption A2, Kalman filtering theory proves that,
for every choice of (vi)i∈Z and (wi)i∈Z satisfying Eq. (2),
a matrix K ∈ Rny×1 an a zero mean white noise sequence
(ei)i∈Z exist such that the innovation form

x̂k+1 = Ax̂k +Buk +Kek,

yk = Cx̂k + ek,

is equivalent to Eq. (1) (same I/O behavior).
• Furthermore, the matrix K satisfies

λmax(A−KC) < 1.

• Standard SML solutions estimate (A,B,C,K) by using
this innovation form.
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Notations interlude... (cont’d)

• With matrices A, B, C andD of appropriate dimensions,
for ` ≥ nx, the extended controllability matrix can be de-
fined as follows

Ω`(A,B) =
[
A`−1B · · · AB B

]
.

• We also define the extended observability matrix

Γ`(A,C) =
[
C> (CA)> · · · (CA`−1)>

]>
,

and the block lower triangular Toeplitz matrix

∆`(A,B,C,D) =


D 0 · · · 0
CB D · · · 0
... . . . . . . ...

CA`−2B · · · CB D

 .
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First recursions

• With f and ` ∈ N∗,

y` = Cx̂` + e`,

y`+1 = CAx̂` +CBu` +CKe` + e`+1,

y`+2 = · · · ,
...

i.e.,

y`,f = Γf (A,C)x̂` + ∆u
f (A,B,C,0)u`,f + n`,f ,

with
n`,f = ∆e

f (A,K,C, Iny×ny)e`,f .

G. Mercère et al Noise covariance matrix estimation 12 May 2022 25 / 48



First recursions (cont’d)

• By using all the available time shifts, we get

Y`,f,M = Γf (A,C)X̂`,M + ∆u
fU`,f,M +N`,f,M ,

where M = N + 1− `− f whereas

∆u
f = ∆f (A,B,C,0),

N`,f,M = ∆f (A,K,C, Iny×ny)︸ ︷︷ ︸
∆e

f

E`,f,M .
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Predictor state space form

• Because, for k ∈ T,

ek = yk −Cx̂k,

we get for k ∈ T

x̂k+1 = Ãx̂k +Buk +Kyk,

yk = Cx̂k + ek,

with
Ã = A−KC.
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Further recursions

• We can easily see that

x̂` = Ãx̂`−1 +Bu`−1 +Ky`−1,

= Ã2x̂`−2 + ÃBu`−2 + ÃKy`−2 +Bu`−1 +Ky`−1,

...

i.e, for p ∈ N∗

x̂` = Ãpx̂`−p + Ωp(Ã,K)y`−p,p + Ωp(Ã,B)u`−p,p.

• Because λmax (A−KC) < 1,

x̄` = Ωp(Ã,K)y`−p,p + Ωp(Ã,B)u`−p,p,

is the the optimal linear estimate of x̂` (in the mean square
error sense) given y`−p,p and u`−p,p.
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Data equation

• Thus, with ` ≥ p,

X̂`,M ≈ X̄`,M =
[
Ωp(Ã,B) Ωp(Ã,K)

] [U`−p,p,`+M−1
Y`−p,p,`+M−1

]
• A straightforward combination of the former equations lead

to the data equation

Y`,f,M = ∆u
fUf,`,M +Nf,`,M + Γf (A,C)

×
[
Ωp(Ã,B) Ωp(Ã,K)

] [U`−p,p,`+M−1
Y`−p,p,`+M−1

]
.

• This is nothing but a standard linear least squares mini-
mization problem with good statistical properties because
the past I/O data are uncorrelated with the future noise.
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Numerical implementation

• As any linear least squares problem, an LQ factorization is
involved. More precisely,

Uf

Up

Yp

Yf

 =

L11 0 0
L21 L22 0
L31 L32 L33

Q1

Q2

Q3

 .
• It can be proved that

lim
N→∞

L32L
−1
22

[
Up

Yp

]
= Γf (A,C)X̂f,M .
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Numerical implementation (cont’d)

• Via the following SVD,

L32L
−1
22

[
Up

Yp

]
= UΣV>,

we get an estimate of the system order nx and

Γ̂f (A,C) = U(:, 1 : n̂x)Σ1/2(1 : n̂x, 1 : n̂x),

ˆ̂
Xf,M = Σ1/2(1 : n̂x, 1 : n̂x)V>(1 : n̂x, :).

• Reliable estimates of (A,B,C,K) can be generated from

Γ̂f (A,C) and ˆ̂
Xf,M straightforwardly (up to a similarity

transformation T ).
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NOISE COVARIANCE
MATRIX ESTIMATION



Similarity transformation

• For our noise covariance matrix estimation problem, we
need to have ˆ̂

Xf,M in the basis of (F ,G,H).
• Fortunately, knowing Γ̂f (A,C) and Γf (F ,G), we have

Γf (F ,G)T = Γ̂f (A,C).

• Thus, we can get ˆ̂
Xf,M is the correct basis as follows

ˆ̂
Xf,MT

= Γ†f (F ,G)Γ̂f (A,C)

×Σ1/2(1 : n̂x, 1 : n̂x)V>(1 : n̂x, :).
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Covariance matrix estimation

• We can finally estimate[
Ŵf,M−1

V̂f,M−1

]
=

[
ˆ̂
Xf+1,MT

Yf,M−1

]
−
[
F G
H 0

][ ˆ̂
Xf,M−1T
Uf,M−1

]
,

and[
V̂ Ŝ

Ŝ> Ŵ

]
= lim

M→∞

1

M

[
Ŵf,M−1

V̂f,M−1

] [
Ŵ>

f,M−1 V̂ >f,M−1

]
.
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NUMERICAL
ILLUSTATIONS



Toy example

• We consider

F =

[
0.603 0.603 0 0
−0.603 0.603,0 0

0 0 −0.603 −0.603
0 0 0.603 −0.603

]
,

G =

[
1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971

]
,

H =
[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]
,

K = 4×
[

0.1242 −0.0895
−0.0828 −0.0128
0.0390 −0.0968
−0.0225 0.1459

]
,

Re =
[

0.0176 −0.0267
−0.0267 0.0497

]
.

• We generate 103 realizations of the noise sequence and we
select a data length N = 1000.
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Estimates of the elements of V

v̂11 v̂12 v̂22

Theo. value 0.0176 -0.0267 0.0497
Sample cov. avg. 0.0176 -0.0267 0.0497

std. 0.0008 0.0012 0.0022
ICM avg. 0.0588 -0.0750 0.0888

std. 0.0412 0.0149 0.0057
DCM avg. 0.031 -0.041 0.028

std. 0.0041 0.0013 0.006
CMM avg. 0.023 -0.073 0.031

std. 0.0087 0.0066 0.0092
New meth. avg. 0.0198 -0.0272 0.0516

std. 0.0011 0.0013 0.0024

G. Mercère et al Noise covariance matrix estimation 12 May 2022 37 / 48



Estimates of the elements of W

ŵ11 ŵ12 ŵ22 ŵ23 ŵ34 ŵ44

Theo. value 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031
Sample cov. avg. 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031

std. 0.8886e-03 0.2054e-03 0.6563e-03 0.8750e-03 0.0509e-03 0.1487e-03
ICM avg. 0.0526 -0.0150 0.0355 -0.0454 0.0041 -0.0103

std. 0.0146 0.0079 0.0066 0.0067 0.0042 0.0036
DCM avg. 0.0113 -0.0058 0.0186 -0.0285 0.003 -0.0103

std. 0.004 0.0033 0.0068 0.0067 0.0039 0.0033
CMM avg. 0.0170 -0.0041 0.0124 -0.0234 0.0041 -0.0043

std. 0.0097 0.0082 0.0064 0.0062 0.0052 0.0028
New meth. avg. 0.0196 -0.0041 0.0145 -0.0190 0.0015 -0.0026

std. 0.0017 0.0006 0.0011 0.0011 0.0004 0.0005
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Estimates of the elements of S

ŝ11 ŝ13 ŝ21 ŝ24

Theo. value 0.0183 -0.0045 0.0131 -0.0172
Sample cov. avg. 0.0183 -0.0045 0.0131 -0.0172

std. 0.0008 0.0002 0.0006 0.0008
New meth. avg. 0.0181 -0.0039 0.0137 -0.0169

std. 0.0011 0.0007 0.0010 0.0010
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Michelin results

• Data is generated with VI-CRT (realistic simulator).
• A nonlinear state space model is used, i.e.,

ẋ(t) = f(x(t),u(t), t,θ),

y(t) = g(x(t), t,θ),

with

x =
[
vx ωf ωr Fxf

Fxr Ḟxf
Ḟxr κ κ̇

]>
,

u =
[
Tf Tr

]>
,

y =
[
vx ωf ωr κ̇

]>
,

involving
a single track model for the dynamics,
an effective tire radius model,
a suspension model and a load transfer model.
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Input data
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Output data
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Long. tire force estimation
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Vehicle speed estimation
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Friction reconstruction
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Slip ratio reconstruction
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CONCLUSIONS AND
DISCUSSION



Take home message

• A new solution for noise covariance matrix estimation has
been introduced.
• This solution involves SML solutions only.
• No tuning is required by the user.
• The accuracy of this solution was proved in the linear

Kalman filter framework.
• This solution can be used with an EKF (no accuracy proof

yet).
• See https://doi.org/10.1002/acs.3213.
• Do not hesitate to use SML solutions.
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