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Calendering Process

Calendering process:

o Calendered material pressed between wheels

o 2 calendering wheels are turning at a varying
speed

o Nonlinear thermo-mechanical coupling:
o 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 = 𝑓(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚)
o 𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 = 𝑔(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆)

Aim: Low-dimensional representative model
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System Identification
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System 
Input 𝑄 States 𝑋

o Our system dynamics are governed by nonlinear Partial Differential Equations
(PDEs)

➢ Solution: Data driven modeling along with model order reduction

o Discrete-Time system model:

𝑋 𝑘 + 1 = 𝐴𝑋 𝑘 + 𝐵𝑄(𝑘)
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Reduced Dynamic Mode 

Decomposition with control
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Dynamic Mode Decomposition (1/2)

DMD: Dynamic Mode Decomposition

Nonlinear model:

𝑑෩𝑿

𝑑𝑡
= 𝑁 ෩𝑿

Koopman theory* states that any nonlinear system can be formulated via an infinite
dimensional linear model

𝑑𝑋

𝑑𝑡
= 𝐿 𝑋

Euler discretization:
𝑋 𝑘 + 1 = 𝐴𝑋 𝑘

*: Rowley, C.W., Mezi´c, I., Bagheri, S., Schlatter, P., Henningson, D.S., 2009. Spectralanalysis of nonlinear flows. J. Fluid Mech. 641, 115–127
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Dynamic Mode Decomposition (2/2)

o Consider the snapshot matrix of the states over 𝑁𝑡 instants,
𝑋𝑠𝑛𝑎𝑝 = [𝑋(1), 𝑋(2), … , 𝑋(𝑁𝑡)]

o Split 𝑋𝑠𝑛𝑎𝑝 into 𝑋1 and 𝑋2 such that:

𝑋1 = 𝑋(1), … , 𝑋(𝑁𝑡−1) 𝑎𝑛𝑑 𝑋2 = 𝑋(2), … , 𝑋(𝑁𝑡)

o 𝑋2 is a one step ahead version of 𝑋1:
𝑋2 = 𝐴𝑋1

o 𝐴 can be estimated using the pseudo inverse of 𝑋1, 𝑋1+ (*)
𝐴 = 𝑋2 𝑋1+

o 𝑋1+ can be found using Singular Value Decomposition of 𝑋1

*: Schmid, P.J., 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28.
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Dynamic Mode Decomposition with control 

DMDc: Dynamic Mode Decomposition with control
➢ Input 𝑄 𝑘 ≠ 0;

System model:
𝑋 𝑘 + 1 = 𝐴𝑋 𝑘 + 𝐵𝑄(𝑘)

Splitting snapshot matrix 𝑋𝑠𝑛𝑎𝑝 into 𝑋1 and 𝑋2 and saving input matrix 𝑄:

𝑋2 = 𝐴𝑋1 + 𝐵𝑄

𝑋2 = 𝐴 𝐵
𝑋1
𝑄

As before, (𝐴 𝐵) can be estimated using the pseudo inverse of
𝑋1
𝑄

:

(𝐴 𝐵) = 𝑋2
𝑋1
𝑄

+
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Toy Example
Calendering Toy Example: (No Convection)
Heat diffusion (simple) PDE:

𝜕𝑇

𝜕𝑡
= µ

𝜕2𝑇

𝜕𝑦2
+ 𝑞𝑠𝑜𝑢𝑟𝑐𝑒 𝑓𝑜𝑟 𝑦 ∈]0; 𝐿𝑦[ 𝑎𝑛𝑑 𝑡 ∈ [0; 𝑡𝑒𝑛𝑑]

𝑇 𝑦, 𝑡 = 0 = 373.15 𝐾 (Initial Condition)
𝑇 𝑦 = 0, 𝑡 = 323.15 𝐾 (Boundary Condition)

𝜕𝑇

𝜕𝑦
𝑦 = 𝐿𝑦 , 𝑡 = 0

The state vector 𝑋 at each instant represents the temperature values along the length
𝐿𝑦, 𝑁𝑥 values. So, we will stick for the nomenclature 𝑋 𝑦𝑖 , 𝑡𝑘 instead of 𝑇(𝑦𝑖 , 𝑡𝑘)

➢ Using 2nd order centered finite differences and 1st order implicit Euler, we get a
linear High Fidelity system model of order 𝑁𝑥

Based on selected values of 𝑞𝑠𝑜𝑢𝑟𝑐𝑒, 𝑋𝑠𝑛𝑎𝑝 is collected

µ = cst
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DMDc Validation

o Validation of the DMDc, linear
approximated model
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Model Reduction: Proper Orthogonal Decomposition

Identified model order: (𝑁𝑥~10
2 − 103)

Find matrix 𝑹 ∈ ℝ𝑁𝑥×𝑁𝑡 with a rank 𝑟 < 𝐾 = min(𝑁𝑥, 𝑁𝑡) minimizing the Frobenius
norm of the error 𝑿𝒔𝒏𝒂𝒑 − 𝑹:

min
𝑟𝑎𝑛𝑘(𝑅)≤𝒓

𝑿𝒔𝒏𝒂𝒑 − 𝑹
𝐹

Using Eckart-Young theorem*:

min
𝑟𝑎𝑛𝑘(𝑹)≤𝒓

𝑿𝒔𝒏𝒂𝒑 − 𝑹
𝐹
= 𝑿𝒔𝒏𝒂𝒑 − 𝑿

𝐹

where 𝑋 is the truncated 𝑿𝒔𝒏𝒂𝒑 of order 𝒓

Using SVD of 𝑋𝑠𝑛𝑎𝑝,

𝑋𝑠𝑛𝑎𝑝 = 𝑈Σ𝑉𝑇 = 𝑈𝑟 𝑈𝑒
Σ𝑟 0
0 Σ𝑒

𝑉𝑟
𝑇 𝑉𝑒

𝑇 𝑇

𝑋 = 𝑈𝑟Σ𝑟𝑉𝑟
𝑇

*: G. Berkooz and P.Holmes, The Proper Orthogonal Decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics
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Reduced DMDc

Process model of high order from DMDc: 𝑋 𝑘 + 1 = 𝐴𝑋 𝑘 + 𝐵𝑄 𝑘

Step 1: Use again the Singular Value Decomposition of the matrix 𝑋𝑠𝑛𝑎𝑝
𝑋𝑠𝑛𝑎𝑝 = 𝑈ΣVT

Step 2: Keep the first 𝑟 singular values such that (𝜎𝑗 > 𝜖𝜎1 𝑎𝑛𝑑 𝑗 ∈ [1, 𝑟])

The first 𝑟 vectors of the matrix 𝑈 are the POD modes saved in the matrix 𝑼𝒓,
truncated matrix of 𝑼
Step 3: The reduced order vector of 𝑋 𝑘 is 𝑋𝑟 𝑘 = 𝑈𝑟

𝑇𝑋 𝑘
Step 4: The system model becomes:

𝑈𝑟𝑋𝑟 𝑘 + 1 = 𝐴𝑈𝑟𝑋𝑟 𝑘 + 𝐵𝑄 𝑘
But 𝑈𝑟

𝑇 is orthogonal;
𝑋𝑟 𝑘 + 1 = 𝑈𝑟

𝑇𝐴𝑈𝑟𝑋𝑟 𝑘 + 𝑈𝑟
𝑇𝐵𝑄 𝑘

𝑋𝑟 𝑘 + 1 = 𝐴𝑟𝑋𝑟 𝑘 + 𝐵𝑟𝑄 𝑘
Then reduced order 𝐴 is 𝐴𝑟 = 𝑈𝑟

𝑇𝐴𝑈𝑟 of order (𝑟 ∗ 𝑟)
And the reduced order 𝐵 is 𝐵𝑟 = 𝑈𝑟

𝑇𝐵 of order (𝑟 ∗ 𝑛𝑄)
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POD Reduction and Expansion Results
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The resulting linear model of reduced order from 𝑁𝑥=100 to 𝑟 = 5
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Example based on the Burgers’ equation*, a nonlinear hyperbolic equation

*: J. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, (1948), pp. 171–199.

Nonlinear example
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Example based on the Burgers’ equation*, a nonlinear hyperbolic equation

*: J. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, (1948), pp. 171–199.

Nonlinear example
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BUT!
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Everything used is for a time invariant system based on complete 𝑿𝒔𝒏𝒂𝒑

o System is identified using DMDc based on the available snapshot matrix
𝑋 𝑘 + 1 = 𝐴𝑋 𝑘 + 𝐵𝑄 𝑘

o POD is applied based on available snapshot matrix
𝑋𝑟 𝑘 = 𝑈𝑟

𝑇𝑋 𝑘
! Purely Offline methods

Recursive update of the system model and the POD modes matrix
➢ Changes in the system along with online processing
➢ Time varying systems

𝑋𝑟 𝑘 = 𝑈𝑟,𝑘
𝑇 𝑋 𝑘

𝑋𝑟 𝑘 + 1 = 𝐴𝑟 𝑘 𝑋𝑟 𝑘 + 𝐵𝑟(𝑘)𝑄 𝑘



Recursive POD
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Aim: Update the POD modes matrix recursively:

➢ SVD of the new snapshot matrix after receiving a new snapshot
! High computation requirements (slow processing of order (𝑁𝑥

2𝑁𝑡))

➢ Recursive Least Squares approach (specifically Projection Approximation Subspace
Tracking (PAST) method**)

*: B. Yang, Projection approximation subspace tracking, IEEE Transactions on Signal Processing



Least Squares Approach
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➢ Update the POD recursively using a Recursive Least Squares approach (specifically
Projection Approximation Subspace Tracking (PAST) method*)

min
𝑟𝑎𝑛𝑘 𝑋 ≤𝐾

𝑿𝒔𝒏𝒂𝒑 − 𝑹
𝐹
= 𝑿𝒔𝒏𝒂𝒑 − 𝑿

𝐹

𝑿 = 𝑈𝑟ΣrVr
T = 𝑈𝑟𝑈𝑟

𝑇𝑋𝑠𝑛𝑎𝑝

➢ Simplified cost function

𝑿𝒔𝒏𝒂𝒑 − 𝑿
𝐹

2
= σ𝑘=1

𝑖 𝜆𝑖−𝑘 𝑋 𝑘 − 𝑈𝑟,𝑖𝑈𝑟,𝑖
𝑇 𝑋(𝑘)

2

2
; 𝜆 ∈]0; 1[

➢ PAST algorithm approximation



𝑘=1

𝑖

𝜆𝑖−𝑘 𝑋 𝑘 − 𝑈𝑟,𝑖𝑈𝑟,𝑖
𝑇 𝑋(𝑘)

2

2
≈ 

𝑘=1

𝑖

𝜆𝑖−𝑘 𝑋 𝑘 − 𝑈𝑟,𝑖𝑈𝑟,𝑖−1
𝑇 𝑋 𝑘

2

2

➢ Solvable with Recursive Least Squares (RLS) algorithm

𝑈𝑟,𝑖
𝑇 𝑋 𝑘 ≈ 𝑈𝑟,𝑖−1

𝑇 𝑋(𝑘)
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Recursive Reduced DMDc
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Aim: Update the reduced identified system recursively:

𝑋𝑟 𝑘 + 1 = 𝑈𝑟,𝑘+1
𝑇 𝑋 𝑘 + 1 = 𝐴𝑟,𝑘𝑋𝑟 𝑘 + 𝐵𝑟,𝑘𝑄 𝑘

o DMDc on the available snaphsot matrix initiating 𝐴𝑟 and 𝐵𝑟

𝑋𝑟 𝑘 + 1 = (𝐴𝑟,𝑘 𝐵𝑟,𝑘)(
𝑋𝑟(𝑘)
𝑄(𝑘)

)

➢ Cost function

𝑚𝑖𝑛 𝑋𝑟 𝑘 + 1 − (𝐴𝑟,𝑘 𝐵𝑟,𝑘)(
𝑋𝑟 𝑘

𝑄 𝑘
)

𝟐

𝟐

➢ Find 𝐴𝑟,𝑘 and 𝐵𝑟,𝑘 recursively using Recursive Least Square Algorithm
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Example based on the Burgers’ equation*, a nonlinear hyperbolic equation

*: J. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, (1948), pp. 171–199.

Nonlinear example
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Method BFT (%)

Offline initial batch DMDc 62,38

Offline complete batch DMDc 96,8

Recursive DMDc 99,42

Recursive rDMDc Residuals

𝐵𝐹𝑇 = 100(
𝑋− 𝑋

2

||𝑋−𝑚𝑒𝑎𝑛(𝑋)||2
)



Calendering Process

Calendering process revisited: Finite Elements solver (MEF++)*
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*: https://fr.wikipedia.org/wiki/MEF%2B%2B



Industrial Application

o Data collection (𝑋𝑠𝑛𝑎𝑝) from the inhouse Finite Elements (FEM) solver using step

input
o Model reduction based on updating the POD matrix using SVD with sliding window

or PAST algorithm
o System Identification based on DMDc with reduction or recursive DMDc method

with reduction
o Model order reduction from 𝑁𝑥=8385 to 𝑟 = 5
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POD Update Preliminary Results
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Method BFT (%) Execution 
time (s)

SVD 99,86 520

PAST 99,7 0,17

T=100s

𝑇
𝑇_𝑠𝑣𝑑
𝑇_𝑝𝑎𝑠𝑡

𝑥



System Identification Preliminary Results (1/2)
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Method BFT (%)

Offline complete batch DMDc 75

Recursive DMDc 99,4

T=100s

𝑇
𝑇_𝐷𝑀𝐷
𝑇_𝑟𝐷𝑀𝐷

𝑥



System Identification Preliminary Results (2/2)
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Method BFT (%)

Offline complete batch DMDc 64,4

Recursive DMDc 84,6

T=121s

𝑇
𝑇_𝐷𝑀𝐷
𝑇_𝑟𝐷𝑀𝐷

𝑥
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Conclusion and Prospects

o Data-driven system identification using the Dynamic Mode Decomposition with
control

o Reduction of the system model order using Proper Orthogonal Decomposition

o Recursive Proper orthogonal Decomposition and Dynamic Mode Decomposition

o Validation of methods on a linear time varying example, nonlinear example,
industrial application simulator

Prospects:
o Output measurement study
o Observer requirements and structure
o Model Predictive Control implementation
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Convergence to Setpoint after 7 seconds

THANK YOU

Discussions? 
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