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Context of the study

• Monoclonal antibodies (mAb): inhibition of viral infection.

Figure: Scheme of mAb against COVID-191

1Source: website of National Institutes of Health (https://www.nih.gov/)
Kévin Colin (DCS, KTH) French Identification group November 25, 2021 2 / 44



Context of the study

• In industry, mAb is produced by Chinese Hamster Ovary (CHO) cells.
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Context of the study

• Chinese Hamster Ovary (CHO) cells cultivated in large-scale bioreactors.

Figure: Picture of a bioreactor2

2https://www.engr.colostate.edu/CBE101/topics/bioreactors.html
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Context of the study

Figure: Scheme of a bioreactor3

3https://en.wikipedia.org/wiki/Bioreactor/media/File:Bioreactor_principle.svg
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Context of the study

• Producing mAb is expensive (and so are the treatments)!

• Ronapreve approved by EU commission against COVID-19 at 1.700 EUR4

• Goal: maximization of the yield of mAb produced by CHO cells.

• Which variable should we change for the maximization?

4https://www.leparisien.fr/societe/sante/ronapreve-regkirona-ce-que-lon-sait-des-deux-
traitements-approuves-par-lema-11-11-2021-U64NC7CAQJE2XGVSVW2QF7FIBM.php
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Context of the study

Figure: Scheme of a bioreactor
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How to optimize the feed medium?

Optimize experimentally? No, too long and expensive!

Solution: model-based optimization.

What to model? Kinetic evolution of the concentrations in the bioreactor
w.r.t. variations of the feed medium concentrations.
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Some first principles?

• The model should satisfy some first principles such as mass-balance equation

Evolution
of concentration = What the cells

consume/produce + What the feed
medium brings − What the effluent

takes out

• With mathematics (x = concentration vector)

dx

dt
(t) = q(x(t)) + Fin(t)xfeed(t) − Fout(t)x(t)

where
q: uptake/secretion rate (quantity of metabolites consumed/produced by the
cells during one day)
Fin: flow rate of feed medium.
Fout: flow rate of effluent.
xfeed: concentration of metabolites in the feed medium.
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Some first principles?

• The model should satisfy some first principles such as mass-balance equation

Evolution
of concentration = What the cells

consume/produce + What the feed
medium brings − What the effluent

takes out

• With mathematics (x = concentration vector)

dx

dt
(t) = q(x(t)) + Fin(t)xfeed(t) − Fout(t)x(t)

where
q: uptake/secretion rate (quantity of metabolites consumed/produced by the
cells during one day)
Fin: flow rate of feed medium.
Fout: flow rate of effluent.
xfeed: concentration of metabolites in the medium feed.
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How to model q(x(t))?

• The vector q(x(t)) describes the kinetics of the chemical reactions inside the
cells.

• To model q(x(t)), we need 3 ingredients
Connections between the metabolites (metabolic network).
Stoichiometric coefficients of the reactions (stoichiometric matrix)
Rate (speed) of all the chemical reactions (kinetic expression)
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Ingredient 1: metabolic network
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REAL metabolic network
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Ingredient 2: Stoichiometric matrix

• Stoichiometric coefficients:
Reaction 1: S1 → 2C1

Reaction 2: S2 → C1 + C2

Reaction 3: C1 + 3C2 → P

A =


Reaction 1 Reaction 2 Reaction 3

S1 −1 0 0
S2 0 −1 0
C1 2 1 −1
C2 0 1 −3
P 0 0 1


• Then,

q(x) = Ay(x)
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Ingredient 3: Kinetic expression of the rates

• Parametric expression for the rate vector y(x).

• For biochemical reactions: Monod kinetics

Rate of Reaction i =
n∏

j=1
Modulation function(xj , ηij)

• 4 types of modulation functions:

Activation : xj

xj + θij
Inhibition : 1

1 + µijxj

Double-component : xj

xj + θij

1
1 + µijxj

Neutral effect : 1
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Ingredient 3: Kinetic expression of the rates
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Final parametrized dynamic model

• Final mass balance-equation with kinetics

dx

dt
(t) = Ay(x(t), η) + Fin(t)xfeed(t) − Fout(t)x(t)

• Goal: identify η.

• Everything is measured/known except y(x(t), η). We can estimate the data of
the rates!
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From dynamic to static map modeling

• Data: {y(t), x(t)}N
t=1.

• The identification problem for the i-th rate is

η∗
i = arg min

N∑
t=1

||yi(t) − ym,i(x(t), ηi)||2

where

ym,i(x(t), ηi) =
n∏

j=1

xj(t)
(xj(t) + θij)(1 + µijxj(t))

• We have transformed the nonlinear dynamic identification problem into a
nonlinear static map identification.
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Design of a kernel for Gausian process regression of
Monod functions
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The identification problem

• Focus on one rate.

• The identification problem is

η∗ = arg min
N∑

t=1
||y(t) − ym(x(t), η)||2

where

ym(x(t), η) =
n∏

j=1

xj(t)
(xj(t) + θj)(1 + µjxj(t))
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The identification problem

• Local minima: we need a good initialization of the parameters.

• Main idea: perform a GP regression of each modulation function as
intermediate modeling method for the initialization.
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Step 1: Gaussian process modeling

• Assume additive noise:

y(t) =
n∏

j=1
hj(xj(t), ηj) + ϵ(t)

where ϵ is a white Gaussian noise of variance σ2
e .

• Each function hj is modeled as a zero-mean Gaussian process

hj ∼ GP(0, kj)

• We need an appropriate kernel function for the modeling of the 4 types of
Monod functions.
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Kernel in the literature

• Kernel proposed in the literature5

kj(xj(t), xj(t′), Θj) = γj

(
xj(t)
xj(t′)

)−δj log

(
xj(t)
xj(t′)

)

5Wang, M., Risuleo, R. S., Jacobsen, E. W., Chotteau, V., Hjalmarsson, H. (2020).
Identification of nonlinear kinetics of macroscopic bio-reactions using multilinear Gaussian
processes. Computers Chemical Engineering, 133, 106671
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Kernel in the literature

Figure: Some examples of posterior means6

6Wang, M., Risuleo, R. S., Jacobsen, E. W., Chotteau, V., Hjalmarsson, H. (2020).
Identification of nonlinear kinetics of macroscopic bio-reactions using multilinear Gaussian
processes. Computers Chemical Engineering, 133, 106671
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Kernel in the literature
• However, it can yield inaccurate estimates for small data set and/or poorly
distributed in the input space (≈ bioreactor data).

• Example with y = x/(x + 10) with N = 5 noiseless data randomly chosen in the
interval [80, 130]

Kévin Colin (DCS, KTH) French Identification group November 25, 2021 24 / 44



Research problem

• What to do?

• Idea 1: experiment design (but it is costly!).

• Idea 2: incorporate priors in the kernel design.

Research problem
Design better-tailored kernel function for the modeling of the Monod functions hj .

• Idea: incorporate the structure of the Monod functions in the design.
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Design of a better kernel: activation

• Consider again a simple activation function for the true system

y(x(t)) = hact(x(t), θ) + ϵ

where hact(x(t)) = x(t)/(x(t) + θ).

• The covariance between two output data y(x(t)) and y(x(t′)) is equal to

E[y(x(t))y(x(t′))] = hact(x(t), θ)hact(x(t′), θ) + E[ϵ(t)ϵ(t′)]

• Ideal kernel function for modeling of hact is then

kact,ideal(x(t), x(t′), θ) = hact(x(t), θ)hact(x(t′), θ)

• But (i) this kernel is invalid (covariance matrix never positive definite) and (ii)
it depends on the unknown θ
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Design of a better kernel: activation

• Idea: integrate w.r.t. θ between two bounds θ− and θ+!

kact(x, x′) =
∫ θ+

θ−
hact(x, θ)hact(x′, θ)dθ

=


x2

(
1

θ− + x
− 1

θ+ + x

)
if x = x′

xx′

x − x′ log
(

θ+ + x′

θ+ + x
.
θ− + x

θ− + x′

)
elsewhere

• We obtain a valid kernel constructed directly from activation function (prior
added in the design)!

• But, two additional hyperparameters (θ− and θ+)!
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Step 2: kinetic modeling

• How to choose θ− and θ+?

• If no prior on kinetic parameters θ, we choose "wide bounds" but still
biologically realistic (e.g., θ− = 0.01 and θ+ = 100).

• However, if we have priors on θ in the form of uncertainty intervals

θ ∈ [Θ−, Θ+]

then we choose θ− = Θ− and θ+ = Θ+.
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Design of a better kernel: activation
• Back to the example with bounds θ− = 0.01 and θ+ = 100.
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Design of a better kernel: activation
• Assume that we know that θ ∈ [5, 20]. Chosen bounds: θ− = 5, θ+ = 20.
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Design of a better kernel: inhibition

• Inhibition function
hinh(x) = 1/(µx + 1)

• We can similarly construct a kernel with integration:

kinh(x, x′) =
∫ µ+

µ−
hinh(x, µ)hinh(x′, µ)dµ

=


1
x

(
1

µ−x + 1 − 1
µ+x + 1

)
if x = x′

1
x − x′ log

(
µ+x + 1
µ+x′ + 1 .

µ−x + 1
µ−x′ + 1

)
elsewhere
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Design of a better kernel: double-component

• Double-component
hdc(x) = hact(x, θ)hinh(x, µ)

• New kernel:

kdc(x, x′) = kact(x, x′)kinh(x, x′)
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Design of a better kernel: neutral effect

• Neutral effect
hne(x) = 1

• We should consider a mean function and a zero covariance.

• Instead of this, we approximate for neutral function by

hne(x) = 1 + εx

with ε << 1 (10−3).

• Then, kne(x, x′) = (1 + εx)(1 + εx′).
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Final kernel

• We have a kernel for each type of kinetics. For each modulation function, we
have to select the best kernel.

• BUT, we do not know the type of kinetic beforehand.

• Final kernel:

kj(xj , x′
j) = βact,jkact(xj , x′

j) + βinh,jkinh(xj , x′
j) + βdc,jkdc(xj , x′

j) + βne,jkne(xj , x′
j)

• By tuning the hyperparameters βj = (βact,j , βinh,j , βdc,j , βne,j)T , we can select
different types of kinetics.

• With βj = (1, 0, 0, 0)T , we will consider activation functions for hj .
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Tuning the hyperparameters with Empirical Bayes
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Hyperparameter estimation
• With n different metabolites, we have n hyperparameter vectors βj to estimate.

• We have data

y =

 y(1)
...

y(N)


• Empirical Bayes: we want to estimate the hyperparameter vector
β = (βT

1 , · · · , βn)T such that we maximize the likelihood p(y|β).

• BUT

y(t) =
n∏

j=1
hj(xj(t)) + ϵ(t)

hj ∼ GP(0, kj(βj))

→ Likelihood intractable!
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Hyperparameter estimation

• How to circumvent the problem?

• Solution: introduce latent variables hj = {hj(t)}N
t=1 for all j = 1, · · · , n (→

N × n latent variables).

• How to estimate? Iterative estimation of the hyperparameters and latent
variables as follows

From β(k), we sample the latent variables hj from the posterior
p(h1, · · · , hn|y, β(k)) =⇒ ĥ

(k)
j .

From ĥ
(k)
j , we estimate β which maximizes p(h(k)|β) =⇒ β(k+1)

k → k + 1

• Expectation maximization + sampling (heuristic convergence to global optimum
for β).
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Hyperparameter estimation

• How to sample from joint posterior p(h1, · · · , hn|y, β(k))?

• Solution: Gibbs sampling, i.e., iterative sampling of the conditional posterior
distributions.
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Hyperparameter estimation

• Hyperparameter optimization?

• Solve
β∗

j = arg max
βj

− log det(K(βj)) − ĥT
j K−1(βj)ĥj (1)

where
K(βj) = βact,jKact + βinh,jKinh + βdc,jKdc + βne,jKne (2)

• Nonconvex optimization:
Bruteforce optimization.
Combinatorial optomization.
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Numerical example
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Numerical example

• Toy example with n = 6 metabolites and σ2
ϵ = 10−3.

y = h1 × h2 × h3 × h4 × h5 × h6 + ϵ

Modulation function Type of kinetic θj µj

h1 Activation 8.01 -
h2 Neutral - -
h3 Inhibition - 2.27
h4 Double Component 6.81 0.82
h5 Activation 0.67 −
h6 Inhibition − 1.8

Table: True type of kinetics and parameters for the 6 modulation functions hi.

• N = 30 concentration data chosen randomly in interval [0, 10].
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Numerical example
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Real-life data with 4 metabolites in kinetic modeling
• Black: data, Blue: kernel from literature, Red and magenta: new kernel
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Conclusion and possible
extension
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Conclusion

• Design of a better-tailored kernel for the modeling of Monod functions.

• Better results than kernel in the literature.

• Main idea: incorporate the structure of the functions to be modeled in the
kernel design.
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Future work and possible extension

• Test on real-life data.

• First possible generalization of the study∫ θ+

θ−
hact(x, θ)hact(x′, θ)dθ →

∫ ∞

−∞
hact(x, θ)hact(x′, θ)p(θ)dθ
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Future work and possible extension

• Second possible extension: assume that we have a static map to be modeled of
this form

y(x) =
n∑

j=1
ϕj(x, θj) + ϵ

where ϕj(x, θj) are parametrized nonlinear basis functions (structure known,
parameter θj unknown).

• Nonlinear least-square optimization → local minimum.

• Idea: GP regression with a kernel equal to a linear combination of kernels
designed as

kj(x, x′) =
∫ ∞

−∞
ϕj(x, θj)ϕj(x′, θj)p(θj)dθj
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Thank you for your attention!
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