Water distribution networks leaks estimation in faulty sensor context: a graph approach

K. Srinivasarengan, S. Aberkane, V. Laurain

25 Nov 2021 vincent.laurain@univ-lorraine.fr

つひひ

V. Laurain (Université de Lorraine) GT Ident 1 / 36

Context

Status of Water Distribution Network (WDN)

- \blacksquare Currently, at best 20%, of drinking water is lost
- How to best avoid leaks ? \rightarrow Detecting them and prioritise interventions T.
- SPHEREAU FUI Project : Towards a more efficient water management
	- Rural site in France
	- \mathbf{m} 82 flowmeters
	- Water direction is known
	- 4 years data each 15 minutes

 Ω

Just focus on one part

4 0 8

∋⊳⊣

 Ω

- m. 1,2,3,4 are District Metered Areas (DMA)
- y_1, y_2, y_3, y_4 are flowmeters

Is it possible to really estimate leaks?

Let us have a look at y_3

- −1 indicates a missing data
- 0 are real 0 (the sensor is dead)
- Regular water consumption never reaches 0

Is it possible to really estimate leaks?

Inseparability of night consumption and leaks \rightarrow it is only possible to estimate leaks with respect to a certain reference

drawback

What if leaks appear during the day?

- Contribution 1 : Kernel modelling of water demand m.
- Average over the day can be taken
- The reference is the difference between measurements and the model

In any case

The data must contain an unleaky time region Leaks can be detected up to some reference

 $1 - 10$

Water management traditional approach : the water balance

What about DMA 1?

Total Consumption : $\mathcal{T}_{C_1}(k) = y_1(k) - y_2(k) - y_4(k)$ \blacksquare Leaks : $\mathcal{L}_1(k) = y_1(k) - y_2(k) - y_4(k) - \tilde{r}_1(k)$ Equivalent Leaks : $\mathcal{L}_1(k) = \varepsilon_1(k) - \varepsilon_2(k) - \varepsilon_4(k)$

$$
\begin{cases}\nT_{C1}(k) = y_1(k) - y_2(k) - y_4(k) & \begin{cases}\n\mathcal{L}_1(k) = \varepsilon_1(k) - \varepsilon_2(k) - \varepsilon_4(k) \\
T_{C2}(k) = y_2(k) - y_3(k) & \begin{cases}\n\mathcal{L}_2(k) = \varepsilon_2(k) - \varepsilon_3(k) \\
\mathcal{L}_2(k) = \varepsilon_2(k) - \varepsilon_3(k)\n\end{cases} \\
T_{C4}(k) = y_4(k) & \begin{cases}\n\mathcal{L}_3(k) = \varepsilon_3(k) \\
\mathcal{L}_4(k) = \varepsilon_4(k)\n\end{cases}\n\end{cases}
$$

V. Laurain (Université de Lorraine) GT Ident 7 / 36

つひひ

When problems arise

What about DMA 1?

4 0 8

- how to handle missing data? \mathbb{R}^n
- Sometimes Consumption becomes strongly negative? \mathbb{R}^2

When problems arise

Details on the sensors

- Strong correlation between y_1 and y_2 m.
- Low correlation between y_4 and y_1
- Sometimes y_4 exceeds y_1 ш
- \rightarrow Sensors can be faulty

Problematic

Is it possible and how to identify leaks in a sensor faulty context?

← ロ ▶ → イ 同

- **2** [Graphs paralellism](#page-16-0)
- **3** [Identification of leaks](#page-24-0)
- **4** [Real dataset results](#page-28-0)
- **6** [Conclusions](#page-33-0)

Dollar

4 日下 ∢●

Outline

- **1** [Noisy sensors modelling](#page-10-0)
- 2 [Graphs paralellism](#page-16-0)
- **3** [Identification of leaks](#page-24-0)
- 4 [Real dataset results](#page-28-0)
- **6** [Conclusions](#page-33-0)

∋ k i

4 0 8

Assumptions

Sensors may contain additive default

$$
y_i(k) = y_i^o(k) + D_i(k)
$$

\n
$$
\varepsilon_i(k) = y_i^o(k) + D_i(k) - r_i(k)
$$

$$
\begin{cases} \mathcal{L}_1(k) + \mathcal{D}_1(k) - \mathcal{D}_2(k) - \mathcal{D}_4(k) = \varepsilon_1(k) - \varepsilon_2(k) - \varepsilon_4(k) \\ \mathcal{L}_2(k) + \mathcal{D}_2(k) - \mathcal{D}_3(k) = \varepsilon_2(k) - \varepsilon_3(k) \\ \mathcal{L}_3(k) + \mathcal{D}_3(k) = \varepsilon_3(k) \\ \mathcal{L}_4(k) + \mathcal{D}_4(k) = \varepsilon_4(k) \end{cases}
$$

Problematic

How to identify $\mathcal{L}_i(k)$ and $\mathcal{D}_i(k)$?

V. Laurain (Université de Lorraine) CT Ident 12 / 36

Assumptions

Potentially, each DMA contains leaks m.

Potentially, each sensor is faulty \mathbb{R}^2

$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 \ 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \ \end{bmatrix} \begin{bmatrix} \mathcal{L}_1(k) \\ \mathcal{L}_2(k) \\ \mathcal{L}_3(k) \\ \mathcal{D}_1(k) \\ \mathcal{D}_2(k) \\ \mathcal{D}_3(k) \\ \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_1(k) \\ \varepsilon_2(k) \\ \varepsilon_3(k) \\ \varepsilon_4(k) \end{bmatrix}
$$

4 0 8

General Problematic

Problematic 1

Is it possible to uniquely estimate X ? \rightarrow

- Number of equations is the number of DMA
- Number of unknowns $n_{DMA}+n_y$
- Underdetermined problem п.

Can we propose a regularized identification scheme?

[Noisy sensors modelling](#page-10-0)

Preliminary Problematic

4 D F

 200

Preliminary Problematic

What about overdetermined cases

- We know which defaults are present
- **Their value is still unknown**

[Noisy sensors modelling](#page-10-0)

Preliminary Problematic

Preliminary Problematic

Is it possible to uniquely estimate X_s ? \rightarrow

- Answer is straight forward : Yes iff $rank(A_s) = n_X$
- But...Very uninteresting in practice
- Water managers are not mathematicians!

Can we give a comprehensive topological answer to this identifiability problem? \rightarrow Use of graphs

 Ω

Outline

1 [Noisy sensors modelling](#page-10-0)

2 [Graphs paralellism](#page-16-0)

3 [Identification of leaks](#page-24-0)

4 [Real dataset results](#page-28-0)

6 [Conclusions](#page-33-0)

∋ k i

4 0 8

Strategy

$$
A = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right]
$$

Train of thoughts

- **Matrices A and B look like indidence matrices of graphs Let I_G be the incidence** matrix of the directed graph G, then:
	- \blacksquare \blacksquare $\mathsf{I}_G(i, j) = 1$ if edge *j* has its arrow leaving node *i*
	- \blacksquare $I_G(i, i) = -1$ if edge *j* has its arrow entering node *i*
	- \blacksquare $I_G(i, j) = 0$ if edge j is not incident on node i,
- Note that by construction, matrices A and B embed directly the topology of the m. network.

つへへ

What are the corresponding graphs?

[Graphs paralellism](#page-16-0)

Graph/Matrices analogy

$$
\mathbf{I}_{G_{\mathcal{R}}} = \left[\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ & & \\ \mathbf{B} & & \\ & & \\ \end{array} \right],
$$

÷

 4 ロ } 4 4 9 } 4 \equiv } -4

[Graphs paralellism](#page-16-0)

Graph/Matrices analogy

$$
\mathbf{I}_{G_{\mathcal{F}}} = \left[\begin{array}{rrrrrrrrrr} -1 & -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \end{array} \right] = \left[\begin{array}{rrrrrr} -1 & -1 & -1 & -1 & -1 & 0 & 0 \\ -1 & -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &
$$

[Graphs paralellism](#page-16-0)

Graph/Matrices analogy

$$
\mathbf{I}_{G_{\mathcal{F}}} = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{array} \right] = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 0 & 0 \\ -\mathbf{A}_{s} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]
$$

,

4 日下 ∢母 \rightarrow ×. ∋⊳⊣ 299

э

Preliminary conclusions

Remarks

■ Contribution 2 : It is possible to derive an algorithmic construction of graphs for the given problem

- The residual graph has exactly the same topology as the physical network
- \blacksquare In the proposed representation, sensors come as edges, which is the dual version of usual water network graph representations

◂**◻▸ ◂⁄** ▸

 200

- A node 0 is needed : It adds a redundant equation
- Solving $AX = BY \Leftrightarrow$ solving $-I$ _F $X = I$ _R Y (and rank(A) = rank(I _F))
- What are the sufficient and necessary conditions on G_F to guarantee identifiability?

Contribution 3

Theorem 1 : The defaults are identifiable iff G_F is a directed tree

Example

Example

Let the following WDN

す日→

×

 \rightarrow

 299

э

Is the default combination \mathcal{L}_3 , \mathcal{L}_5 , \mathcal{D}_3 , \mathcal{D}_4 , \mathcal{D}_5 identifiable?

Example

Other advantages

- This result can also indicate the resilience against appearance of new defaults
- Complexity for computing the rank of **A** by gaussian elimination: $\mathcal{O}(n^3)$ п.
- Checking if G_F is a directed tree: $\mathcal{O}(n)$ п.

Outline

- **1** [Noisy sensors modelling](#page-10-0)
- 2 [Graphs paralellism](#page-16-0)
- **3** [Identification of leaks](#page-24-0)
- 4 [Real dataset results](#page-28-0)
- **6** [Conclusions](#page-33-0)

∋⊳⊣

4 0 8

Original Problem

What to do if the presence of default is unknown?

- The problem is underdetermined \rightarrow Regularisation
- Physical assumption : Leaks must be positive T.

Contribution 4

$$
\hat{X} = \min_{\mathcal{X}} \|\mathbf{A}\mathcal{X} - \mathbf{B}\mathcal{Y}\|^2 + \mathcal{R}
$$

s.t $\mathcal{L}_i > 0 \quad \forall i \in [1, ..., |E_{G_{\mathcal{R}}}|-1]$

 $\mathcal R$ is the regularization term

Propositions for R

- The solution with the least number of defaults is the most acceptable
- $\mathbb{R} = |X|_0 \rightarrow \ell_0$ norm relaxed as ℓ_1 norm = LASSO
- The solution closest to yesterday solution is the most acceptable (requires a ground truth on day 1)
- **■** $\mathcal{R} = |\Delta X|_0 \rightarrow \ell_0$ norm relaxed as ℓ_1 norm = LASSO
- Problem: possibly multiple solutions

[Identification of leaks](#page-24-0)

Proposition using previous results

Statement

- Theorem $1 \rightarrow i$ t is possible to determine all identifiable default structures
- Strategy : Replace one quadratic optimization scheme by multiple quadratic analytic solutions

Algorithm

- Step 1 (offline): determine all identifiable structures
- Step 2 (online) : identify all identifiable structures using LS
- \blacksquare Step 3 (online) : retain the physical plausible solutions
- \blacksquare Step 4 (online) : retain the solutions fulfilling the regularisation

Advantages

- \blacksquare It is possible to display a range of solutions
- It is possible to enforce a priori by acting on step 3 (If we know some defaults are present)

◂**◻▸ ◂⁄** ▸

 Ω

[Identification of leaks](#page-24-0)

Handling missing data

Merging nodes

What if sensor 2 is down?

Consequences

Any leak $\mathcal L$ estimated on the merged DMA 1, 2 corresponds to a leak positioned either on DMA 1 or on DMA 2

Outline

- **1** [Noisy sensors modelling](#page-10-0)
- 2 [Graphs paralellism](#page-16-0)
- **3** [Identification of leaks](#page-24-0)
- **4** [Real dataset results](#page-28-0)

6 [Conclusions](#page-33-0)

B.N.

4 0 8

Results on a true data set

 290

V. Laurain (Université de Lorraine) and the settlement of the South 30 / 36 and 30 / 36 and 30 / 36

Results on a true data set $($ zoom 1)

Results on a true data set (zoom 2)

 QQ

Results on a true data set (zoom 3)

Outline

- **1** [Noisy sensors modelling](#page-10-0)
- 2 [Graphs paralellism](#page-16-0)
- **3** [Identification of leaks](#page-24-0)
- 4 [Real dataset results](#page-28-0)

4 0 8

∍ \rightarrow

Conclusions

Context

- Leak identification in water dynamical networks \blacksquare
- Realistic assumptions : Sensors are faulty $\mathcal{L}_{\mathcal{A}}$

Contributions

- Graphs transposition for the identifiability problem \mathbb{R}^n
- Sufficient and necessary identifiability conditions fully expressed in graph topology \mathbb{R}^2

 \leftarrow

つひひ

- Proposition of a regularised identification scheme algorithm m.
- Test on real data

Water distribution networks leaks estimation in faulty sensor context: a graph approach

K. Srinivasarengan, S. Aberkane, V. Laurain

25 Nov 2021 vincent.laurain@univ-lorraine.fr

 Ω