Water distribution networks leaks estimation in faulty sensor context: a graph approach

K. Srinivasarengan, S. Aberkane, V. Laurain

25 Nov 2021 vincent.laurain@univ-lorraine.fr

GT Ident

V. Laurain (Université de Lorraine)

Context

Status of Water Distribution Network (WDN)

- Currently, at best 20%, of drinking water is lost
- \blacksquare How to best avoid leaks ? \rightarrow Detecting them and prioritise interventions
- SPHEREAU FUI Project : Towards a more efficient water management
 - Rural site in France
 - 82 flowmeters
 - Water direction is known
 - 4 years data each 15 minutes

Just focus on one part

→ ∃ →

GT Ident

3 / 36

- 1,2,3,4 are District Metered Areas (DMA)
- y_1, y_2, y_3, y_4 are flowmeters

Is it possible to really estimate leaks?

Let us have a look at y_3

- \blacksquare -1 indicates a missing data
- 0 are real 0 (the sensor is dead)
- Regular water consumption never reaches 0

Is it possible to really estimate leaks?

Inseparability of night consumption and leaks \to it is only possible to estimate leaks with respect to a certain reference

Leaks are the difference between measurements and reference

drawback

What if leaks appear during the day?

- Contribution 1 : Kernel modelling of water demand
- Average over the day can be taken
- The reference is the difference between measurements and the model

In any case

The data must contain an unleaky time region Leaks can be detected up to some reference

Water management traditional approach : the water balance

What about DMA 1?

Total Consumption : $\mathcal{T}_{C_1}(k) = y_1(k) - y_2(k) - y_4(k)$ Leaks : $\mathcal{L}_1(k) = y_1(k) - y_2(k) - y_4(k) - \tilde{r}_1(k)$ Equivalent Leaks : $\mathcal{L}_1(k) = \varepsilon_1(k) - \varepsilon_2(k) - \varepsilon_4(k)$

$$\begin{cases} \mathcal{T}_{C_1}(k) = y_1(k) - y_2(k) - y_4(k) \\ \mathcal{T}_{C_2}(k) = y_2(k) - y_3(k) \\ \mathcal{T}_{C_3}(k) = y_3(k) \\ \mathcal{T}_{C_4}(k) = y_4(k) \end{cases} \qquad \begin{cases} \mathcal{L}_1(k) = \varepsilon_1(k) - \varepsilon_2(k) - \varepsilon_4(k) \\ \mathcal{L}_2(k) = \varepsilon_2(k) - \varepsilon_3(k) \\ \mathcal{L}_3(k) = \varepsilon_3(k) \\ \mathcal{L}_4(k) = \varepsilon_4(k) \end{cases}$$

V. Laurain (Université de Lorraine)

When problems arise

What about DMA 1?

- how to handle missing data?
- Sometimes Consumption becomes strongly negative?

- (A 🖓

When problems arise

Details on the sensors

- Strong correlation between *y*₁ and *y*₂
- Low correlation between y₄ and y₁
- Sometimes y₄ exceeds y₁
- ightarrow Sensors can be faulty

Problematic

Is it possible and how to identify leaks in a sensor faulty context?

Image: Image:

- 1 Noisy sensors modelling
- **2** Graphs paralellism
- **3** Identification of leaks
- **4** Real dataset results
- **5** Conclusions

Outline

- Noisy sensors modelling
- ② Graphs paralellism
- Identification of leaks
- 4 Real dataset results
- 6 Conclusions

Assumptions

Sensors may contain additive default

$$y_i(k) = y_i^{\circ}(k) + \mathcal{D}_i(k)$$

$$\varepsilon_i(k) = y_i^{\circ}(k) + \mathcal{D}_i(k) - r_i(k)$$

$$\begin{aligned} & \left(\mathcal{L}_1(k) \!+\! \mathcal{D}_1(k) \!-\! \mathcal{D}_2(k) \!-\! \mathcal{D}_4(k) \!=\! \varepsilon_1(k) \!-\! \varepsilon_2(k) \!-\! \varepsilon_4(k) \right. \\ & \left. \mathcal{L}_2(k) \!+\! \mathcal{D}_2(k) \!-\! \mathcal{D}_3(k) \!=\! \varepsilon_2(k) \!-\! \varepsilon_3(k) \right. \\ & \left. \mathcal{L}_3(k) \!+\! \mathcal{D}_3(k) \!=\! \varepsilon_3(k) \right. \\ & \left. \mathcal{L}_4(k) \!+\! \mathcal{D}_4(k) \!=\! \varepsilon_4(k) \right. \end{aligned}$$

Problematic

How to identify $\mathcal{L}_i(k)$ and $\mathcal{D}_i(k)$?

V. Laurain (Université de Lorraine)

Assumptions

Potentially, each DMA contains leaks

Potentially, each sensor is faulty

General Problematic

Problematic 1

Is it possible to uniquely estimate X? \rightarrow

- Number of equations is the number of DMA
- Number of unknowns n_{DMA}+n_y
- Underdetermined problem

Can we propose a regularized identification scheme?

Noisy sensors modelling

Preliminary Problematic

Preliminary Problematic

What about overdetermined cases

- We know which defaults are present
- Their value is still unknown

Noisy sensors modelling

Preliminary Problematic

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}}_{\mathbf{A}_{s}} \underbrace{\begin{bmatrix} \mathcal{L}_{3}(k) \\ \mathcal{L}_{4}(k) \\ \mathcal{D}_{3}(k) \end{bmatrix}}_{\mathbf{X}_{s}} = \underbrace{\begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathbf{B}} \begin{bmatrix} \varepsilon_{1}(k) \\ \varepsilon_{2}(k) \\ \varepsilon_{3}(k) \\ \varepsilon_{4}(k) \end{bmatrix}}$$

Preliminary Problematic

Is it possible to uniquely estimate X_s ? \rightarrow

- Answer is straight forward : Yes iff $rank(A_s) = n_X$
- But...Very uninteresting in practice
- Water managers are not mathematicians!

Can we give a comprehensive topological answer to this identifiability problem? \rightarrow Use of graphs

GT Ident

16 / 36

Outline

- Noisy sensors modelling
- Ø Graphs paralellism
- Identification of leaks
- ④ Real dataset results
- 6 Conclusions

Strategy

Train of thoughts

- Matrices A and B look like indidence matrices of graphs Let I_G be the incidence matrix of the directed graph G, then:
 - **I**_G(i,j) = 1 if edge j has its arrow leaving node i
 - $I_G(i,j) = -1$ if edge j has its arrow entering node i
 - $I_G(i,j) = 0$ if edge j is not incident on node i,
- Note that by construction, matrices A and B embed directly the topology of the network.
- What are the corresponding graphs?

Graphs paralellism

Graph/Matrices analogy

(日) (同) (三) (三)

Graphs paralellism

Graph/Matrices analogy

Graphs paralellism

Graph/Matrices analogy

$$\mathbf{I}_{G_{\mathcal{F}}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ & & \\ & & \\ & -\mathbf{A}_{s} \end{bmatrix}$$

,

• • • • • • • • • • • •

Preliminary conclusions

Remarks

Contribution 2 : It is possible to derive an algorithmic construction of graphs for the given problem

- The residual graph has exactly the same topology as the physical network
- In the proposed representation, sensors come as edges, which is the dual version of usual water network graph representations

(日) (同) (三) (三)

GT Ident

22 / 36

- A node 0 is needed : It adds a redundant equation
- Solving $\mathbf{A}X = \mathbf{B}Y \Leftrightarrow$ solving $-\mathbf{I}_{\mathcal{F}}X = \mathbf{I}_{\mathcal{R}}Y$ (and $rank(\mathbf{A}) = rank(\mathbf{I}_{\mathcal{F}})$)
- What are the sufficient and necessary conditions on *G*_{*F*} to guarantee identifiability?

Contribution 3

Theorem 1 : The defaults are identifiable iff $G_{\mathcal{F}}$ is a directed tree

Example

Example

Let the following WDN

э

23 / 36

GT Ident

Is the default combination $\mathcal{L}_3, \mathcal{L}_5, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5$ identifiable?

Example

Answer : No

 $G_{\mathcal{F}}$ is not a directed tree (it contains loops)

Other advantages

- This result can also indicate the resilience against appearance of new defaults
- Complexity for computing the rank of **A** by gaussian elimination: $\mathcal{O}(n^3)$
- Checking if $G_{\mathcal{F}}$ is a directed tree: $\mathcal{O}(n)$

Outline

- Noisy sensors modelling
- Ø Graphs paralellism
- **3** Identification of leaks
- ④ Real dataset results
- 6 Conclusions

Original Problem

What to do if the presence of default is unknown?

- \blacksquare The problem is underdetermined \rightarrow Regularisation
- Physical assumption : Leaks must be positive

Contribution 4

$$\begin{split} \hat{X} &= \min_{\mathcal{X}} \|\mathbf{A}\mathcal{X} - \mathbf{B}Y\|^2 + \mathcal{R} \\ s.t \quad \mathcal{L}_i > 0 \quad \forall i \in [1, \dots, |\mathcal{E}_{\mathcal{G}_{\mathcal{R}}}| - 1] \end{split}$$

 ${\mathcal R}$ is the regularization term

Propositions for \mathcal{R}

- The solution with the least number of defaults is the most acceptable
- $\mathcal{R} = |X|_0 \rightarrow \ell_0$ norm relaxed as ℓ_1 norm = LASSO
- The solution closest to yesterday solution is the most acceptable (requires a ground truth on day 1)
- $\blacksquare \ \mathcal{R} = |\Delta X|_0 \to \ell_0 \text{ norm relaxed as } \ell_1 \text{ norm} = LASSO$
- Problem : possibly multiple solutions

Identification of leaks

Proposition using previous results

Statement

- \blacksquare Theorem 1 \rightarrow it is possible to determine all identifiable default structures
- Strategy : Replace one quadratic optimization scheme by multiple quadratic analytic solutions

Algorithm

- Step 1 (offline): determine all identifiable structures
- Step 2 (online) : identify all identifiable structures using LS
- Step 3 (online) : retain the physical plausible solutions
- Step 4 (online) : retain the solutions fulfilling the regularisation

Advantages

- It is possible to display a range of solutions
- It is possible to enforce a priori by acting on step 3 (If we know some defaults are present)

Identification of leaks

Handling missing data

Merging nodes

What if sensor 2 is down?

Consequences

Any leak \mathcal{L} estimated on the merged DMA 1, 2 corresponds to a leak positioned either on DMA 1 or on DMA 2

Outline

- Noisy sensors modelling
- ② Graphs paralellism
- Identification of leaks
- **4** Real dataset results

6 Conclusions

Results on a true data set

30 / 36

V. Laurain (Université de Lorraine)

Results on a true data set (zoom 1)

31 / 36

V. Laurain (Université de Lorraine)

Results on a true data set (zoom 2)

GT Ident 32 / 36

Results on a true data set (zoom 3)

GT Ident

33 / 36

Outline

- Noisy sensors modelling
- Ø Graphs paralellism
- Identification of leaks
- 4 Real dataset results

6 Conclusions

Conclusions

Context

- Leak identification in water dynamical networks
- Realistic assumptions : Sensors are faulty

Contributions

- Graphs transposition for the identifiability problem
- Sufficient and necessary identifiability conditions fully expressed in graph topology

GT Ident

35 / 36

- Proposition of a regularised identification scheme algorithm
- Test on real data

Water distribution networks leaks estimation in faulty sensor context: a graph approach

K. Srinivasarengan, S. Aberkane, V. Laurain

25 Nov 2021 vincent.laurain@univ-lorraine.fr

