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Context

Status of Water Distribution Network (WDN)

Currently, at best 20%, of drinking water is lost

How to best avoid leaks ? → Detecting them and prioritise interventions

SPHEREAU FUI Project : Towards a more efficient water management

Rural site
in France

82
flowmeters

Water
direction is
known

4 years data
each 15
minutes
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A case study

Just focus on one part

1,2,3,4 are District Metered Areas (DMA)

y1,y2,y3,y4 are flowmeters

Is it possible to really estimate leaks?

Let us have a look at y3
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A case study

y3 represents the consumption over a whole DMA

−1 indicates a missing data

0 are real 0 (the sensor is dead)

Regular water consumption never reaches 0

Is it possible to really estimate leaks?

Inseparability of night consumption and leaks → it is only possible to estimate leaks
with respect to a certain reference
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A case study

Possible references : Minimum night flow

Night flow has less variablility

The reference is the minimum night flow

Leaks are the difference between measurements and reference

drawback

What if leaks appear during the day?
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A case study

More Robust approach : Modelling

Contribution 1 : Kernel modelling of water demand

Average over the day can be taken

The reference is the difference between measurements and the model

In any case

The data must contain an unleaky time region
Leaks can be detected up to some reference
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Water management traditional approach : the water
balance

What about DMA 1?

Total Consumption : TC1 (k) = y1(k)− y2(k)− y4(k)

Leaks : L1(k)=y1(k)− y2(k)− y4(k)− r̃1(k)

Equivalent Leaks : L1(k)=ε1(k)−ε2(k)−ε4(k)


TC1(k)=y1(k)− y2(k)− y4(k)

TC2(k)=y2(k)− y3(k)

TC3(k)=y3(k)

TC4(k)=y4(k)


L1(k)=ε1(k)−ε2(k)−ε4(k)

L2(k)=ε2(k)−ε3(k)

L3(k)=ε3(k)

L4(k)=ε4(k)
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When problems arise

What about DMA 1?

how to handle missing data?

Sometimes Consumption becomes strongly negative?
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When problems arise

Details on the sensors

Strong correlation between y1 and y2

Low correlation between y4 and y1

Sometimes y4 exceeds y1

→ Sensors can be faulty

Problematic

Is it possible and how to identify leaks in a sensor faulty context?
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Noisy sensors modelling

Assumptions

Sensors may contain additive default

yi (k) = y o
i (k) +Di (k)

εi (k) = y o
i (k) +Di (k)− ri (k)
L1(k)+D1(k)−D2(k)−D4(k)=ε1(k)−ε2(k)−ε4(k)

L2(k) +D2(k)−D3(k)=ε2(k)− ε3(k)

L3(k) +D3(k)=ε3(k)

L4(k) +D4(k)=ε4(k)

Problematic

How to identify Li (k) and Di (k) ?
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Noisy sensors modelling

Assumptions

Potentially, each DMA contains leaks
Potentially, each sensor is faulty


1 0 0 0 1 −1 0 −1
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


︸ ︷︷ ︸

A



L1(k)
L2(k)
L3(k)
L4(k)
D1(k)
D2(k)
D3(k)
D4(k)


︸ ︷︷ ︸

X

=


1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


ε1(k)
ε2(k)
ε3(k)
ε4(k)


︸ ︷︷ ︸

Y
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Noisy sensors modelling

General Problematic


1 0 0 0 1 −1 0 −1
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


︸ ︷︷ ︸

A



L1(k)
L2(k)
L3(k)
L4(k)
D1(k)
D2(k)
D3(k)
D4(k)


︸ ︷︷ ︸

X

=


1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


ε1(k)
ε2(k)
ε3(k)
ε4(k)


︸ ︷︷ ︸

Y

Problematic 1

Is it possible to uniquely estimate X? →
Number of equations is the number of DMA
Number of unknowns nDMA+ny
Underdetermined problem

Can we propose a regularized identification scheme?
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Noisy sensors modelling

Preliminary Problematic


1 0 0 0 1 −1 0 −1
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


︸ ︷︷ ︸

A



0
0
L3(k)
L4(k)

0
0

D3(k)
0


︸ ︷︷ ︸

X

=


1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


ε1(k)
ε2(k)
ε3(k)
ε4(k)


︸ ︷︷ ︸

Y

Preliminary Problematic

What about overdetermined cases

We know which defaults are present
Their value is still unknown
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Noisy sensors modelling

Preliminary Problematic


0 0 0
0 0 −1
1 0 1
0 1 0


︸ ︷︷ ︸

As

 L3(k)
L4(k)
D3(k)


︸ ︷︷ ︸

Xs

=


1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


ε1(k)
ε2(k)
ε3(k)
ε4(k)


︸ ︷︷ ︸

Y

Preliminary Problematic

Is it possible to uniquely estimate Xs? →
Answer is straight forward : Yes iff rank(As) = nX
But...Very uninteresting in practice
Water managers are not mathematicians!

Can we give a comprehensive topological answer to this identifiability problem?
→ Use of graphs
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Graphs paralellism

Strategy

A =


1 0 0 0 1 −1 0 −1
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


Train of thoughts

Matrices A and B look like indidence matrices of graphs Let IG be the incidence

matrix of the directed graph G , then:

IG (i , j) = 1 if edge j has its arrow leaving node i
IG (i , j) = −1 if edge j has its arrow entering node i
IG (i , j) = 0 if edge j is not incident on node i ,

Note that by construction, matrices A and B embed directly the topology of the
network.
What are the corresponding graphs?
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Graphs paralellism

Graph/Matrices analogy

Residual Graph GR

0 1 2 3

4

E1 E2 E3

E4

IGR =


−1 0 0 0
1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1

 =


−1 0 0 0

B

 ,
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Graphs paralellism

Graph/Matrices analogy

Fault Graph GF

0 1 2 3

4

L1

L2

L3

L4

D1 D2 D3

D4

IGF=


−1 −1 −1 −1 −1 0 0 0
−1 0 0 0 −1 1 0 1
0 −1 0 0 0 −1 1 0
0 0 −1 0 0 0 −1 0
0 0 0 −1 0 0 0 −1

=


−1 −1 −1 −1 −1 0 0 0

−A
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Graphs paralellism

Graph/Matrices analogy

Fault Graph GF

0 1 2 3

4

L3

L4

D3

IGF =


1 1 0
0 0 0
0 0 1
−1 0 −1
0 −1 0

 =


1 1 0

−As

 ,
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Graphs paralellism

Preliminary conclusions

Remarks

Contribution 2 : It is possible to derive an algorithmic construction of graphs

for the given problem

The residual graph has exactly the same topology as the physical network
In the proposed representation, sensors come as edges, which is the dual
version of usual water network graph representations
A node 0 is needed : It adds a redundant equation

Solving AX = BY ⇔ solving −IFX = IRY (and rank(A) = rank(IF ) )

What are the sufficient and necessary conditions on GF to guarantee
identifiability?

Contribution 3

Theorem 1 : The defaults are identifiable iff GF is a directed tree
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Graphs paralellism

Example

Example

Let the following WDN

0 1 2 3

4 5 6

E1 E2 E3

E4 E5 E6

Is the default combination L3,L5,D3,D4,D5 identifiable?
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Graphs paralellism

Example

Answer : No

0 1 2 3

4 5 6

L3

L5

D3

D4 D5

GF is not a directed tree (it contains loops)

Other advantages

This result can also indicate the resilience against appearance of new defaults

Complexity for computing the rank of A by gaussian elimination: O(n3)

Checking if GF is a directed tree: O(n)
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Identification of leaks

Original Problem

What to do if the presence of default is unknown?

The problem is underdetermined → Regularisation
Physical assumption : Leaks must be positive

Contribution 4

X̂ = min
X
‖AX−BY ‖2 +R

s.t Li > 0 ∀i ∈ [1, . . . , |EGR | − 1]

R is the regularization term

Propositions for R

The solution with the least number of defaults is the most acceptable
R = |X |0 → `0 norm relaxed as `1 norm = LASSO
The solution closest to yesterday solution is the most acceptable (requires a
ground truth on day 1)
R = |∆X |0 → `0 norm relaxed as `1 norm = LASSO
Problem : possibly multiple solutions
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Identification of leaks

Proposition using previous results

Statement

Theorem 1 → it is possible to determine all identifiable default structures
Strategy : Replace one quadratic optimization scheme by multiple quadratic
analytic solutions

Algorithm

Step 1 (offline): determine all identifiable structures
Step 2 (online) : identify all identifiable structures using LS
Step 3 (online) : retain the physical plausible solutions
Step 4 (online) : retain the solutions fulfilling the regularisation

Advantages

It is possible to display a range of solutions
It is possible to enforce a priori by acting on step 3 (If we know some defaults are
present)
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Identification of leaks

Handling missing data

Merging nodes

What if sensor 2 is down?

0

1

2

3

4

y1

y2

y3

y4

0

1, 2

34

y1

y3y4

Consequences

Any leak L estimated on the merged DMA 1, 2 corresponds to a leak positioned
either on DMA 1 or on DMA 2
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Real dataset results
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Real dataset results

Results on a true data set
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Real dataset results

Results on a true data set (zoom 1)

Effects of node merging
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Real dataset results

Results on a true data set (zoom 2)

True solution does not cor-
respond to the regularisa-
tion
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Real dataset results

Results on a true data set (zoom 3)

True solution is found
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Conclusions

Conclusions

Context

Leak identification in water dynamical networks

Realistic assumptions : Sensors are faulty

Contributions

Graphs transposition for the identifiability problem

Sufficient and necessary identifiability conditions fully expressed in graph topology

Proposition of a regularised identification scheme algorithm

Test on real data
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