

Multivariable fractional system identification

Abir MAYOUFI, Stéphane VICTOR, Rachid MALTI, Manel CHETOUI, Mohamed AOUN

25/11/2021

Outline

Two methods for MISO fractional system identification

Two-stage algorithm

Simulation examples

Conclusions and prospects

Outline

Two methods for MISO fractional system identification

Simulation examples

Conclusions and prospects

Consider a MISO fractional system

The parameter vector θ is defined as :

$$\theta = \left[\rho \ \mu\right]^{T}$$

- Objective: estimate the parameter vector θ of • ρ gathers all the MISO transfer function coefficients : $\rho = [\rho_1, ..., \rho_K]^T$ with $\rho_k = [b_{0,k}, b_{1,k}, ..., b_{M_k,k}, a_{1,k}, ..., a_{N_k,k}], k = 1, ..., K$
- μ gathers all the MISO transfer function differentiation orders :
 - Case1: if a global S-commensurate order is sought :

 $\mu = \nu$

Case2: if local S-commensurate order is sought : Ο

$$\mu = \left[\nu_1, \dots, \nu_K\right]^T$$

 \circ Case3: if the MISO model is non commensurate, μ gathers all the differentiation orders :

$$\mu = \left[\mu_1, ..., \mu_K\right]^T$$

with
$$\mu_k = \left[\beta_{0,k}, \beta_{1,k}, ..., \beta_{M_k,k}, \alpha_{1,k}, ..., \alpha_{N_k,k}\right], k = 1, ..., K$$

Outline

Two methods for MISO fractional system identification

Two-stage algorithm

Simulation examples

Conclusions and prospects

Two-stage algorithm

Two-stage algorithm

Optimal instrumental variable method for coefficient estimations SISO model

Equation error :

where

on error :

$$\varepsilon(t) = y^{*}(t) - \varphi^{*}(t)^{T} \rho \qquad assumed in orders orders orders or expression or ders or expression or der s or expression or e$$

 $\varepsilon(t) = v^*(t) - \varphi^*(t)^T \rho$

with

$$\rho^T = \begin{bmatrix} b_0 & b_1 & \dots & b_N & a_1 & \dots & a_M \end{bmatrix}$$

Approximation Least Squares estimates

$$\hat{\rho}_{LS} = \left(\phi^{*T}\phi^{*}\right)^{-1}\phi^{*T}Y^{*}$$

with

$$\boldsymbol{\phi}^* = \left[\boldsymbol{\varphi}^*(t_1) ... \boldsymbol{\varphi}^*(t_H) \right]$$

Limitation :

- Computation of time domain derivatives of inputs/output signal 1.
- Amplification of noise in high frequencies

B(*p*) A(p)

y(t)

 $\Psi e(t)$

Filtered derivatives (ex: Poisson's filter)

$${}^{P}D_{\gamma} = rac{p^{\gamma}}{1 + \left(rac{p}{\omega_{c}}\right)^{N}}$$

$$\varepsilon_f(t) = y_f^* - \varphi_f^* \rho$$

$$\hat{
ho}=\left(\phi_{\scriptscriptstyle f}^{^{*T}}\phi_{\scriptscriptstyle f}^{^{*}}
ight)^{^{-1}}\phi_{\scriptscriptstyle f}^{^{*T}}Y^{^{*}}$$

Limitation :

u(t)

biased estimation in presence of output noise 1.

Optimal instrumental variable method for coefficient estimations SISO model

Instrumental variable estimator

$$\hat{\rho}_{srivcf} = \left(\phi_f^{ivT}\phi_f^*\right)^{-1}\phi_f^{ivT}Y_f^*$$

- with the constraints (Ljung, 1999) :
 - $egin{cases} \phi_{f}^{ivT} oldsymbol{\phi}_{f}^{*} : ext{non-singular} \ \phi_{f}^{ivT} Y_{f}^{*} : ext{uncorrelated} \end{cases}$
- Young showed that the optimal IV estimator is :

 $F^{opt}(p) = \frac{1}{A(p)} \begin{cases} \text{unbaised estimation} \\ \text{minimum variance} \end{cases}$

However A(p) is usually unknown

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
u(t) \\ \hline A(p) \\ \hline A(p) \\ \hline \end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\end{array} \\
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\bigg{c}
\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array} \\
\bigg{c}
\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array}
\left) \\
\left(\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array} \\
\left(\end{array} \\
\left(\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array}
\left) \\
\left(\end{array}
\left(\end{array} \\
\left(\end{array}
\left) \\
\left(\end{array}
\left$

where the instrumental matrix is :

$$\Phi_f^{iv}(t) = \left[\varphi_f^{iv}(t_1)^T, \dots, \varphi_f^{iv}(t_H)^T\right]^T$$

and the regression matrix is :

$$\Phi_f^*(t) = \left[\varphi_f^*(t_1)^T, \dots, \varphi_f^*(t_H)^T\right]^T$$

Optimal instrumental variable method for coefficient estimation

Optimal instrumental variable method for coefficient estimations MISO model

In this case, the error function takes the following form:

$$\varepsilon_k(t) = x_k(t) - y_k(t), \ k = 1, \dots, K$$

where y_k is the output of the k-th-subsystem:

and

$$x_k(t) = y^*(t) - \sum_{\substack{m=1\\m \neq k}}^K y_m(t), \ k = 1, ..., K$$

The error function can also be written as:

$$\varepsilon_{k}(t) = x_{k}(t) - \varphi_{k}(t)\rho_{k}, \ k = 1, ..., K$$

with $\varphi_{k}(t) = \begin{bmatrix} p^{\beta_{0,k}}u_{k}(t) \dots p^{\beta_{M_{k},k}}u_{k}(t) \\ -p^{\alpha_{1,k}}x_{k}(t) \dots -p^{\alpha_{N_{k},k}}x_{k}(t) \end{bmatrix}^{T}$

The main idea is to

bsystem and

applicate the SISO

Optimal instrumental variable method for coefficient estimations MISO model

Step 1: Initialize the parameter vector $\rho = [\rho_1, ..., \rho_K]^T$ **Step 2:** for iter = 1 : convergence (Iterative iv estimations) for each subsystem k

Implement an iterative algorithm to optimize the Generate the instrumental variables \hat{y}_k from the auxiliary model with the estimated polynomials based on the estimated parameter vector ρ_k

ii. Update the filter
$$F_{k,\gamma}^{iter}(p,\hat{\rho}_k)$$
 with the new estimate

$$F_{k,\gamma}^{iter}(p,\hat{\rho}_k) = \underbrace{\frac{p'}{\hat{A}_k(p,\hat{\rho}_k)}}_{\hat{A}_k(p,\hat{\rho}_k)}$$

Then evaluate the prefiltered derivatives of $u_k(t)$, $x_k(t)$ and $\hat{y}_k(t)$ iii.

$$\begin{cases} D^{\beta_i} u_{k,f}(t) = F^{iter}_{\beta_i}(p) u_k(t) \\ D^{\alpha_j} y_{k,f}(t) = F^{iter}_{\alpha_j}(p) y_k(t) \\ D^{\alpha_j} x_{k,f}(t) = F^{iter}_{\alpha_j}(p) x_k(t) \end{cases}$$

iv. Based on these prefiltered data, compute the new estimates

$$\hat{\rho}_{k,srivcf}^{iter} = \left(\phi_{k,f}^{ivT}\phi_{k,f}\right)^{-1}\phi_{k,f}^{ivT}X_{k,f}$$

Optimal instrumental variable method for coefficient estimations

MISO model

Gauss-Newton algorithm for differentiation order estimation

Gauss-Newton algorithm for differentiation order estimation

The error sensitivity function is computed accordingly:

• Case1: if a global S-commensurate order is sought :

 $\frac{\partial \varepsilon}{\partial \mu} = \frac{\partial \varepsilon}{\partial \nu} = -\sum_{k=1}^{K} \frac{\partial \hat{y}_{k}}{\partial \nu} \qquad \Longrightarrow \qquad \frac{\partial \hat{y}_{k}}{\partial \nu} = \left[\sum_{j=0}^{M_{k}} j \hat{b}_{j,k} p^{j\nu} + \sum_{j=0}^{M_{k}} \sum_{i=1}^{N_{k}} (j-i) \hat{b}_{j,k} \hat{a}_{i,k} p^{(i+j)\nu}\right] \times \frac{(\ln(p))}{\left(1 + \sum_{k=1}^{N_{k}} \hat{a}_{i,k} p^{i\nu}\right)^{2}} u_{k}(t)$

• Case2: if local S-commensurate order is sought :

$$\frac{\partial \varepsilon}{\partial \mu} = \left[\frac{\partial \varepsilon}{\partial v_1}, \dots, \frac{\partial \varepsilon}{\partial v_K}\right] = \left[\frac{-\partial \hat{y}_1}{\partial v_1}, \dots, \frac{-\partial \hat{y}_K}{\partial v_K}\right]$$

Case3: if the MISO model is non commensurate :

$$\frac{\partial \varepsilon}{\partial \mu} = \left[\frac{\partial \varepsilon}{\partial \mu_1}, \dots, \frac{\partial \varepsilon}{\partial \mu_K}\right]$$

k = 1,...,*K*

???

Two-stage algorithm for coefficient and differentiation order estimation

Step 1: Initialize the parameter vector $\hat{\theta}^0 = \left[\hat{\rho}^0, \hat{\mu}^0 \right]$ Step 2: Iterative all parameter estimation

- Implement an iterative algorithm to optimize the Compute the coefficient vector $\hat{\rho}^{iter}$ with MISO-srivef
 - Differentiation order estimation ii. Initialize λ (usually to 1)

do

do

- a. Evaluate the cost function
- b. Refine the order estimate $\mu^{iter} = \mu^{iter-1} \lambda \left[\mathcal{H}^{-1} \frac{\partial J}{\partial \mu} \right]_{\mu = \hat{\mu}^{iter-1}}$ c. Evaluate the cost function d. Set $\lambda = \lambda / 2$

while
$$J\left(\left[\hat{\rho}^{iter},\hat{\mu}^{iter}\right]\right) > J\left(\left[\hat{\rho}^{iter-1},\hat{\mu}^{iter-1}\right]\right)$$

iii. Form the new estimate parameter vector

while
$$\sum_{l=1}^{\dim \hat{\rho}_k} \left| \frac{\hat{\theta}_l^{iter} - \hat{\theta}_l^{iter-1}}{\hat{\theta}_l^{iter-1}} \right| > \varepsilon$$
 $\hat{\theta}^{iter} = \left[\hat{\rho}^{iter}, \hat{\mu}^{iter} \right]$

Outline

Two methods for MISO fractional system identification

.....

Two-stage algorithm

Simulation examples

Conclusions and prospects

Output Error method for coefficient and differentiation order estimations

The estimation problem is formulated as a minimization problem of the ℓ_2 -norm:

where the output error is defined as :

$$\varepsilon(t,\hat{\theta}) = y^*(t) - \hat{y}(t,\hat{\theta})$$

and the estimated output is defined as :

$$\hat{y}(t) = \sum_{k=1}^{K} y_k(t)$$

Output Error method for coefficient and differentiation order estimations

Step 1: Initialize the parameter vector $\hat{\theta}^0 = \left[\hat{\rho}^0, \hat{\mu}^0 \right]$ Step 2: for iter = 1 : convergence

Implement an iterative algorithm to optimize the (Iterative Levenberg-Marquardt for all parameter estimation)

Compute the parameter vector
$$\hat{\theta}^{iter}$$
 as
 $\hat{\theta}^{iter+1} = \hat{\theta}^{iter} - \left\{ \left[\mathcal{H} + \xi I \right]^{-1} \frac{\partial J}{\partial \hat{\theta}} \right\} \Big|_{\hat{\theta}^{iter}}$

with

$$\begin{cases} \frac{\partial J}{\partial \hat{\theta}} = \sum_{h=1}^{H} \frac{\partial \varepsilon(t_{h})^{T}}{\partial \hat{\theta}} \varepsilon(t_{h}) : \text{the gradient} \\ \mathcal{H} \approx \sum_{h=1}^{H} \frac{\partial \varepsilon(t_{h})^{T}}{\partial \hat{\theta}} \frac{\partial \varepsilon(t_{h})}{\partial \hat{\theta}} : \text{pseudo_Hessien} \\ \xi : \text{Marquardt parameter} \end{cases}$$

Output Error method for coefficient and differentiation order estimations

The error sensitivity function is

with

$$\frac{\partial \varepsilon}{\partial \theta} = \frac{\partial \varepsilon}{\partial \left[\rho^T \mu^T \right]^T}$$

The coefficient error sensitivity function is

$$\frac{\partial \varepsilon}{\partial \rho} = \left[\frac{\partial \varepsilon}{\partial \rho_1}, \dots, \frac{\partial \varepsilon}{\partial \rho_K}\right]$$

where

$$\frac{\partial \varepsilon}{\partial \rho_{k}} = -\frac{\partial \hat{y}_{k}}{\partial \rho_{k}} = -\left[\frac{\partial \hat{y}_{k}}{\partial b_{0,k}}, \dots, \frac{\partial \hat{y}_{k}}{\partial b_{M_{k},k}}, \frac{\partial \hat{y}_{k}}{\partial a_{1,k}}, \dots, \frac{\partial \hat{y}_{k}}{\partial a_{N_{k},k}}\right]$$
with

$$\frac{\partial \hat{y}_{k}}{\partial b_{j,k}} = \frac{p^{\hat{\beta}_{j,k}}}{1 + \sum_{i=1}^{N_{k}} \hat{a}_{i,k}} p^{\hat{a}_{i,k}}} u_{k}(t), \quad j = 0, \dots, M_{k}$$

$$\frac{\partial \hat{y}_{k}}{\partial a_{i,k}} = -\frac{\sum_{j=0}^{M_{k}} \hat{b}_{j,k} p^{\hat{\beta}_{j,k} + \hat{a}_{i,k}}}{\left(1 + \sum_{i=1}^{N_{k}} \hat{a}_{i,k} p^{\hat{a}_{i,k}}\right)^{2}} u_{k}(t), \quad i = 1, \dots, N_{k}$$

The differentiation order error sensitivity function is computed numerically

Outline

Two methods for MISO fractional system identification

Simulation examples

Conclusions and prospects

Simulation example 1 – Coefficient estimation with known differentiation orders

Simulation example 1 – Coefficient estimation with known differentiation order

Hypotheses:

✓ Model structures are known.

 \checkmark The output signal is corrupted by white noise.

✓ The differentiation orders are known

✓ Comparison between MISO-srivcf method and MISO-oe method:

✓ Estimate the unknown coefficients.

- \checkmark Performance analysis with a Monte Carlo for 75 runs.
- \checkmark Study the influence of the commensurate order.

Simulation example 1 – Coefficient estimation with known differentiation order

	True	MIS	O-oe	MISO	-srivcf
	ρ	$\bar{ ho}$	$\hat{\sigma_{ ho}}$	$\bar{ ho}$	$\hat{\sigma_{ ho}}$
b _{0,1}	1	1.0225	0.1006	1.0096	0.0919
<i>a</i> _{1,1}	3	3.0802	0.4373	3.0161	0.3623
b _{0,2}	2	2.0082	0.0423	1.9996	0.0349
$a_{1,2}$	2	2.0107	0.0598	1.9983	0.0481
b _{0,3}	5	4.9998	0.0186	5.0017	0.0122
a _{1,3}	1	1.0005	0.0057	1.0009	0.0046

The table illustrates the numerical results of Monte Carlo simulation and the performance of MISO-srivcf and MISO-oe methods.

Simulation example 1 – Coefficient estimation with known differentiation order

Unknown differentiation order

- The cost function is computed for different values of the commensurate order v, in the stability range (0.4, 1.35), and plotted versus the commensurate order.
- The minimum of the cost function is found at v=0.75. The minimum value of the criterion equals -19dB. Note that as a NSR of – 20dB is applied the modeling error is around 1dB,
- The smoothness of the cost function allows to implement gradient-based optimization algorithms.

Hypotheses:

- ✓ Model structures are known.
- \checkmark The output signal is corrupted by white noise.
- ✓ The S-commensurate order are unknown

Objectives:

✓ Comparison between the MISO-oosrivcf method and the MISO-oe method:

✓ Estimate the unknown coefficients and the S-commensurate order.
 ✓ Performance analysis with a Monte Carlo for 75 runs. .

Hessian matrix

 $\mu^{iter} = \mu^{iter-1} - \lambda \left[\mathcal{H}^{-1} \frac{\partial J}{\partial \mu} \right]$

 $\dim(\mathcal{H}) = 3$

In MISO-oosrivcf algorithm, the hessian matrix contains only differentiation ordres sensitivity functions

lack of information make the MISO-oosrivcf algorithm slower to converge

$$\hat{\theta}^{iter+1} = \hat{\theta}^{iter} - \left\{ \left[\mathcal{H} + \xi I \right]^{-1} \frac{\partial J}{\partial \hat{\theta}} \right\} \Big|_{\hat{\theta}^{iter}}$$

 $\dim(\mathcal{H}) = 9$

In MISO-oe algorithm, the hessian matrix contains coefficients sensitivity functions and differentiation ordres sensitivity functions plus the cross sensitivity functions between the coefficients/differentiation orders.

	True	MIS	O-oe	MISO-	oosrivcf	
	θ	$\bar{\theta}$	$\hat{\sigma}_{\theta}$	$\bar{\theta}$	$\hat{\sigma}_{\theta}$	
$b_{0,1}$	1	1.0079	0.1010	1.0047	0.0919	
$a_{1,1}$	3	3.0366	0.4073	3.0125	0.3623	F(s) = 1
$\alpha_{1,1}$	0.25	0.2491	0.0135	0.2498	0.0105	$ T_1(3) = \frac{1}{330.25 + 1}$
$b_{0,2}$	2	2.0082	0.0523	1.9989	0.0439	$\Rightarrow F_2(s) = \frac{2}{2^{(0.5)}+1} \qquad \Rightarrow (++) \qquad \Rightarrow (+) \qquad \Rightarrow (+)$
$a_{1,2}$	2	2.0107	0.0707	1.9988	0.0625	$F_{r}(s) = -5$
$\alpha_{1,2}$	0.5	0.4987	0.0068	0.5002	0.0056	$13^{0.75} + 1$
$b_{0,3}$	5	4.9998	0.0116	5.0117	0.0098	
$a_{1,3}$	1	1.0005	0.0050	1.0009	0.0034	
$\alpha_{1,3}$	0.75	0.7504	0.0025	0.7499	0.0012	

The table illustrates the numerical results of Monte Carlo simulation and the performance of MISO-oosrivcf and MISO-oe methods.

Hypotheses:

- ✓ Model structures are known.
- \checkmark The output signal is corrupted by white noise.
- ✓ Differentiation orders are unknown

✓ Comparison between the MISO-oosrivcf method and the MISO-oe method:

✓ Estimate the unknown coefficients and the differentiation order.
✓ Performance analysis with a Monte Carlo for 50 runs. .

	True	MISO-OE		MISO-oosrivef		
	0	ē	$\hat{\sigma}_{\theta}$	Ō	$\hat{\sigma}_{\theta}$	
$b_{0,1}$	1	1.0018	0.0110	1.0001	0.0098	
a _{1,1}	0.5	0.5028	0.0192	0.5022	0.0106	
$a_{2,1}$	1.5	1.5021	0.0112	1.5023	0.0152	
$\mu_{1,1}$	2.8	2.7988	0.0145	2.7992	0.0161	
$\mu_{2,1}$	1.2	1.1985	0.0164	1.1981	0.0108	$F_1(s) = \frac{1}{0.5s^{2.8} + 1.5s^{1.2} + 1}$
$b_{0,2}$	0.5	0.4995	0.0158	0.5014	0.0145	
$a_{1,2}$	0.4	0.4031	0.0571	0.4075	0.0452	\rightarrow $E(s) = \frac{0.5}{\sqrt{2}}$
$a_{2,2}$	1.5	1.4997	0.0466	1.5047	0.0479	$1_{2}(3) = 0.4s^{+}+1.5s^{+}+1$
$\mu_{1,2}$	2.5	2.5068	0.0759	2.4958	0.0685	^
$\mu_{2,2}$	1.1	1.1009	0.0415	1.0968	0.0356	E(s) = 1.5
b _{0,3}	1.5	1.5021	0.0336	1.4998	0.0298	$r_{3}(s) = \frac{1}{0.6s^{1.6} + 1.5s^{0.7} + 1}$
$a_{1,3}$	0.6	0.6121	0.1253	0.6099	0.1234	
$a_{2,3}$	1.5	1.4891	0.1088	1.4892	0.1023	
$\mu_{1,3}$	1.6	1.5958	0.1109	1.6023	0.1065	
$\mu_{2,3}$	0.7	0.6959	0.0538	0.6990	0.0501	

The table illustrates the numerical results of Monte Carlo simulation and the performance of MISO-oosrivcf and MISO-oe methods.

Outline

Two methods for MISO fractional system identification

Simulation examples

Conclusions and prospects

Conclusion

Conclusions:

Optimal instrumental method for MISO fractional systems.

- ✓ Coefficient estimation
- ✓ Cofficient estimation combined withdifferentiation ordre estimation

✤Output error method for MISO fractional systems.

Initialize procuss (three stage-initialization of differentiation order to reduce the number of parameter

Comparison between both algorithm (the oe-MISO method converge faster)

Prospects:

Application to climate modeling