Deep Subspace Encoders for Nonlinear System Identification

Maarten Schoukens m.schoukens@tue.nl

Electrical Engineering, Control Systems Group

Nonlinear Systems

Structural Dynamics

Human Body

Electrical Circuits

Nonlinear System Identification

Linear Identification: Characterize a **hyperplane** Nonlinear Identification: Characterize a **manifold**

TU/e EINDHOVEN UNIVERSITY O TECHNOLOGY

Source: J. Schoukens and L. Ljung, Nonlinear System Identification A User-Oriented Roadmap, IEEE Control Systems Magazine, vol. 39, n. 6, Dec. 2019

Nonlinear System Identification

Linear Identification: Characterize a **hyperplane** Nonlinear Identification: Characterize a **manifold**

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Source: J. Schoukens and L. Ljung, Nonlinear System Identification A User-Oriented Roadmap, IEEE Control Systems Magazine, vol. 39, n. 6, Dec. 2019

Nonlinear Models

Linear Parameter-Varying

NARMAX

Block-Oriented Models

Nonlinear State-Space

$$y_k = f(u_{k-1}, y_{k-1}, e_{k-1}) + e_k$$

$$u_k \longrightarrow f \longrightarrow y_k$$

$$x_{k+1} = f(x_k, u_k, e_k)$$
$$y_k = g(x_k, u_k) + e_k$$

Nonlinear Models

Linear Parameter-Varying

NARMAX

Block-Oriented Models

Nonlinear State-Space

Scales well to MIMO

Compact representation of dynamics

Nonlinear State-Space Model

Function Representation:

Neural Network

Polynomial

Local Linear Models

Probabilistic/Deterministic

Nonlinear State-Space Model

Function Representation:

Neural Network

Polynomial

Local Linear Models

Probabilistic/Deterministic

Noise Model:

Output Error

Innovation Form

Challenges

Deep Subspace Encoder

Examples

Model Validation

Model Structure:

Model Structure:

Model Structure:

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Challenges

Deep Subspace Encoder

Examples

Large # parameters

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

parameters grow with state, input and output dimension

Large # parameters

Local minima

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Problem is nonlinear in the parameters

Large # parameters

Local minima

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Instabilities during training Model simulation or gradient calculation can become

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Large # parameters

Local minima

Instabilities during training

Computational / memory cost

1. Minimize using Gauss-Newton like algorithm

 \rightarrow Scales badly for growing data

- 2. Simulate full data record for one optimization step
 - → No room for parallelization due to initial state transients

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

Challenges

Deep Subspace Encoder

Examples

Deep Subspace Encoder

Challenges:

Large # parameters

Instabilities during training

Local minima

Computational / memory cost

Solution:

Combining System Identification and Deep Learning!

Subspace Encoder

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

input variables

Function approximation: integrated squared error [Baron, 1993]

feedforward neural net $V = \mathcal{O}\left(\frac{1}{n}\right) \longrightarrow \#$ hidden neurons basis function expansion $V = \mathcal{O}\left(\frac{1}{n^{2/n_x}}\right)$ # terms

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

J.A.K. Suykens et al., Nonlinear system identification using neural state space models, applicable to robust control design. International Journal of Control, 62(1):129–152, 1995

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

W = weights, b = biases \rightarrow model parameters

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

Include an explicit linear term

Similar to residual neural networks Also present in PNLSS

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

Include an explicit linear term

Similar to residual neural networks Also present in PNLSS

Maarten Schoukens, Improved Initialization of State-Space Artificial Neural Networks, European Control Conference, Rotterdam, 2021 Koen Tiels, PNLSS 1.0: A polynomial nonlinear state-space toolbox for Matlab, http://homepages.vub.ac.be/~jschouk, 2016

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$

Representation *f* and *g* nonlinearity as a fully connected feedforward neural network (MLP)

Include an explicit linear term

Similar to residual neural networks Also present in PNLSS

$$x_{k+1} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_x \sigma \left(\begin{bmatrix} \tilde{W}_{fx} & \tilde{W}_{fu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_f \right) + \tilde{b}_x$$
$$y_k = \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_y \sigma \left(\begin{bmatrix} \tilde{W}_{gx} & \tilde{W}_{gu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_g \right) + \tilde{b}_y$$

Subspace Encoder

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

Parameter Initialization

$$x_{k+1} = Ax_k + Bu_k + f(x_k, u_k)$$
$$y_k = Cx_k + Du_k + g(x_k, u_k)$$

Parameter Initialization

$$x_{k+1} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_x \sigma \left(\begin{bmatrix} \tilde{W}_{fx} & \tilde{W}_{fu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_f \right) + \tilde{b}_x$$
$$y_k = \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_y \sigma \left(\begin{bmatrix} \tilde{W}_{gx} & \tilde{W}_{gu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_g \right) + \tilde{b}_y$$

Parameter Initialization

$$x_{k+1} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_x \sigma \left(\begin{bmatrix} \tilde{W}_{fx} & \tilde{W}_{fu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_f \right) + \tilde{b}_x$$
$$y_k = \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_y \sigma \left(\begin{bmatrix} \tilde{W}_{gx} & \tilde{W}_{gu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_g \right) + \tilde{b}_y$$

Random + LTI-approximation initialization

- 1. Use LTI sysid methods to obtain ABCD matrices (Best Linear Approximation)
- 2. Embed LTI approximation in NL state-space model
- 3. Initialize remainder with Random or zero values
- 4. Initial SSNN performance = LTI approximation

Subspace Encoder

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

Intermezzo: Bouc-Wen Benchmark

Intermezzo: Bouc-Wen Benchmark

 \dot{z}_t

8192 samples training & test Random phase multisine input (5-150 Hz

Benchmark system available on: nonlinearbenchmark.org

$$m\ddot{y}_{t} + c\dot{y}_{t} + ky_{t} + z(y_{t}, \dot{y}_{t}) = u_{t}$$

$$\dot{z}_{t} = \alpha\dot{y}_{t} - \beta(\gamma|\dot{y}_{t}|z_{t} + \delta\dot{y}_{t}|z_{t}|)$$
Hysteretic Loop
$$\int_{-0.5}^{0.5} \int_{-100}^{0.5} \int_{-50}^{0} \int_{0}^{0} \int_{-100}^{0} \int_{-50}^{0} \int_{0}^{0} \int_{0}^{0} \int_{100}^{0} \int_{150}^{0} \int_{0}^{0} \int$$

Input (N)

Intermezzo: Bouc-Wen Benchmark

$$m\ddot{y}_t + c\dot{y}_t + ky_t + z(y_t, \dot{y}_t) = u_t$$
$$\dot{z}_t = \alpha \dot{y}_t - \beta \left(\gamma \left| \dot{y}_t \right| z_t + \delta \dot{y}_t \left| z_t \right| \right)$$

n_x = 3, 15 neurons, tanh activation Levenberg-Marquardt optimization (Matlab)

LTI approximation using Matlab 'ssest' command

Monte-Carlo simulation: 100 runs

Intermezzo: Bouc-Wen Benchmark

Neural Networks, European Control Conference, Rotterdam, 2021

Intermezzo: Bouc-Wen Benchmark

Maarten Schoukens, Improved Initialization of State-Space Artificial Neural Networks, European Control Conference, Rotterdam, 2021

Subspace Encoder

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

Multiple Shooting

Problem: training becomes unstable

Idea: Break the dataset and restart simulation (zero or estimated init. state)¹

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

1. J. Decuyper et al., Tuning nonlinear state-space models using unconstrained multiple shooting, IFAC-PapersOnLine, vol. 53, n. 2, pp. 334-340, 2020

Multiple Shooting

Problem: training becomes unstable

Idea: Break the dataset and restart simulation (zero or estimated init. state)

Improves optimization stability and cost function smoothness¹

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Subspace Encoder

Large # parameters

Local minima

efficient representations

smart initialization

cost smoothening

Instabilities during training

Computational / memory cost

multiple shooting

truncated simulation error

stochastic optimization methods

Truncated Simulation Error

Classical Loss:
$$V(\theta) = \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k)^2$$

simulated model output

Marco Forgione et al., Continuous-time system identification with neural networks: Model structures and fitting criteria, European Journal of Control, vol. 59, pp. 69-81, May 2021

Truncated Simulation Error

IU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Marco Forgione et al., Continuous-time system identification with neural networks: Model structures and fitting criteria, European Journal of Control, vol. 59, pp. 69-81, May 2021

Truncated Simulation Error

$$V(\theta) = \frac{1}{N_K T} \sum_{k \in K} \sum_{t=0}^{T-1} (\hat{y}_{k+t|k} - y_{k+t})^2$$

Computational cost is O(T < N) with parallelization

Gradient explosion controlled with cutoff

Smoothened cost function

Sections overlap: higher data efficiency

Batch / Stochastic gradient descent possible: efficient memory use

Subspace Encoder

How to bring all these elements together?

Efficient Representation

Smart Initialization

Multiple Shooting

Cost Smoothening

Stochastic Optimization Methods

Truncated Simulation Error

- 1. State-space neural network model
- 2. Unroll the state-space equation
- 3. Estimate the initial state using an encoder function
- 4. Truncated simulation error cost
- 5. Mini-batch optimization

State-Space Neural Network

$$x_{k+1} = f(x_k, u_k)$$

$$y_k = g(x_k, u_k)$$

$$\mathbf{v}_k = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_x \sigma \left(\begin{bmatrix} \tilde{W}_{fx} & \tilde{W}_{fu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_f \right) + \tilde{b}_x$$

$$y_k = \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{W}_y \sigma \left(\begin{bmatrix} \tilde{W}_{gx} & \tilde{W}_{gu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \tilde{b}_g \right) + \tilde{b}_y$$

Unrolling the State-Space Equation

$$x_{k+1} = f(x_k, u_k)$$
$$y_k = g(x_k, u_k)$$

Initial State

Zero initial state

Estimate initial state directly

Auto-encoder initial state estimator

- \rightarrow transient errors
- \rightarrow growing parameter vector

Initial State: Auto-Encoder

Objective:

Learn a low-dimensional representation of highdimensional data

Initial State: Auto-Encoder

Challenges:

Requires multiple cost functions States are not estimated for their predictive value

Integrate encoder in the main estimation problem!

Daniele Masti et al., Learning nonlinear state–space models using autoencoders, Automatica, vol. 129, n. 109666, May. 2021

Subspace Encoder

Subspace Encoder

One cost function to rule them all!

$$Loss(\theta) = \sum_{k \in K} \sum_{t=0}^{T-1} (\hat{y}_{k+t|k} - y_{k+t})^2$$

Vanilla Subspace Encoder: Overview

G.I. Beintema et al., Nonlinear state-space identification using deep encoder networks,

Learning for Dynamics and Control, PMLR vol. 144, pp. 241-250, May. 2020

Model Structure:

Model Validation

Vanilla Subspace Encoder: Overview

Model Structure:

OE Noise structure

Cost Function:

$$Loss(\theta) = \sum_{k \in K} \sum_{t=0}^{T-1} (\hat{y}_{k+t|k} - y_{k+t})^2$$

Truncated simulation error minimization

Optimization:

Minibatch gradient descent with early stopping

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY G.I. Beintema et al., Nonlinear state-space identification using deep encoder networks, Learning for Dynamics and Control, PMLR vol. 144, pp. 241-250, May. 2020

Advantages:

Efficient nonlinearity representation

Good scaling towards MIMO

Cost function smoothness

Good results starting from random init.

Good scaling towards large datasets

Consistency

Subspace Encoder: Extensions

 $x_{k+1} = f(x_k, u_k)$

 $y_k = q(x_k, u_k) + e_k$

Implemented extensions:

From OE to Innovation noise

From DT to CT

From time-series to video sequences / spatiotemporal data

From nonlinear to Koopman

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

G.I. Beintema et al., Non-linear state-space model identification from video data using deep encoders, IFAC-PapersOnLine, vol. 54, nr. 7, pp. 697-701, 2021.

L.C. Iacob et al., Deep Identification of Nonlinear Systems in Koopman Form, IEEE Conference on Decision and Control, 2021 (accepted).

 $x_{k+1} = f(x_k, u_k, e_k)$

 $y_k = g(x_k, u_k) + e_k$

'Classical' Approach

Challenges

Deep Subspace Encoder

Examples

Examples

Wiener-Hammerstein Benchmark _{G1} fl·] _{G2}

Vanilla Subspace Encoder Spatiotemporal Encoder

Von Karman Vortices

Koopman Encoder

Silverbox Benchmark

Examples

G1f1.1G2fff

Vanilla Subspace Encoder Spatiotemporal Encoder

Koopman Encoder

System:

- G_1, G_2 : 3rd order low-pass filters
- *f*(): one sided soft saturation nonlinearity

Data:

80 10³ samples for training

20 10³ samples for validation

88 10³ samples for test

G.I. Beintema et al., Nonlinear state-space identification using deep encoder networks, Learning for Dynamics and Control, PMLR vol. 144, pp. 241-250, May. 2020

Model:

1-hidden layer, 15 neurons, tanh activation

 $n_{\rm b} = n_{\rm a} = 50, n_{\rm x} = 6, T = 80$

Adam optimizer, batch size: 1024, learning rate: 10⁻³

Random parameter initialization

Data:

80 10³ samples for training 20 10³ samples for validation 88 10³ samples for test

G.I. Beintema et al., Nonlinear state-space identification using deep encoder networks, Learning for Dynamics and Control, PMLR vol. 144, pp. 241-250, May. 2020

G.I. Beintema et al., Nonlinear state-space identification using deep encoder networks, Learning for Dynamics and Control, PMLR vol. 144, pp. 241-250, May. 2020

IVERSITY OF CHNOLOGY

Identification Method	Test RMS Simulation (mV)	Test NRMS Simulation
State-space Encoder (this work)	0.241	0.0987%
QBLA (Schoukens et al., 2014)	0.279	0.113%
Pole-zero splitting (Sjöberg et al., 2012)	0.30	0.123%
NL-LFR (Schoukens and Toth, 2020)	0.30	0.123%
PNLSS (Paduart et al., 2012)	0.42	0.172%
Generalized WH (Wills and Ninness, 2009)	0.49	0.200%
LS-SVM (Falck et al., 2009)	4.07	1.663%
Bio-social evolution (Naitali and Giri, 2016)	8.55	3.494%
Auto-encoder (reproduction) (Masti and Bemporad, 2018)	12.01	4.907%
Genetic Programming (Khandelwal, 2020)	23.50	9.605%
SVM (Marconato and Schoukens, 2009)	47.40	19.373%
BLA (Lauwers et al., 2009)	56.20	22.969%

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Examples

Wiener-Hammerstein Benchmark

> Vanilla Subspace Encoder

Spatiotemporal Encoder

Von Karman Vortices

Koopman Encoder

Silverbox Benchmark

Von Karman Vortices

EINDHOVEN UNIVERSITY OF TECHNOLOGY

BRUSSEL

VRIJE UNIVERSITEIT Collaboration with Jan Decuyper, INDI, VUB

Von Karman Vortices

Model:

What is the form of $h_{ heta}$ and $\psi_{ heta}$?

Fully Connected NN (MLP): Flatten images into vectors Disregards spatial information

Convolutional neural networks: Applied directly on images Exploits spatial information

2-hidden layer, 64 neurons, tanh activation

 $n_b = n_a = 3$, $n_x = 10$, T = 30

UNIVERSITY OF

Adam optimizer, batch size: 256, learning rate: 10⁻³

Random parameter initialization

Von Karman Vortices

Collaboration with Jan Decuyper, INDI, VUB

LINDHOVEN UNIVERSITY OF TECHNOLOGY

VRIJE

BRUSSEL

UNIVERSITEIT

Examples

Wiener-Hammerstein Benchmark

Vanilla Subspace Encoder Spatiotemporal Encoder

Von Karman Vortices

Koopman Encoder

Silverbox Benchmark

Silverbox Benchmark

System: Forced Duffing Oscillator

 $m\ddot{y}(t) + d\dot{y}(t) + k_1y(t) + k_3y^3(t) = u(t)$

Electrical implementation of mass-springdamper

Cubic spring nonlinearity

Multisine Training, Validation, Test

Arrowhead Test

TU/e EINDHOVEN UNIVERSITY O TECHNOLOGY L.C. Iacob et al., Deep Identification of Nonlinear Systems in Koopman Form, IEEE Conference on Decision and Control, 2021 (accepted).

Silverbox Benchmark: Koopman

Koopman model with input:

Idea: embed nonlinear dynamics in a linear model by lifting the states to a high (infinite) dimensional space.

Koopman subspace Encoder:

Encoder simultaneously learns reconstructability map and lifting function

Model Dynamics:

$$f(x_k, u_k) = Ax_k + B(x_k)u_k$$
$$h(x_k) = Cx_k$$

L.C. Iacob et al., Deep Identification of Nonlinear Systems in Koopman Form, IEEE Conference on Decision and Control, 2021 (accepted).

$$\tilde{x}_{k+1} = f(\tilde{x}_k)$$

$$\Phi(\tilde{x}_{k+1}) = A\Phi(\tilde{x}_k)$$

 $n_a = n_b = 10$, $n_x = 20$, T = 49, batch size = 256, ADAM 2-hidden layer ANN for encoder and *B*, 40 neurons

Silverbox Benchmark

	NRMS	RMS(V)
Test	0.00552	0.00029
Arrowhead	229.411	12.2502
Arrowhead - no extrapol.	0.00811	0.00033

Problem in the extrapolation region

Methods that use poly basis perform better

Results close to state of the art

/ERSITY OF

Multisine test (top), arrowhead test (bottom)

Conclusions

Deep Subspace Encoder combines:

ANN state-space representations Multiple shooting / truncated simulation error State encoder / reconstructability map Batch optimization

Resulting in:

Cost function smoothness Good scaling with data size / dimension State-of-the-art benchmarking results Flexible to include other model representations (thanks to automatic differentiation)

Implementation available in Python DeepSI toolbox: https://github.com/GerbenBeintema/deepSI

Team

Gerben I. Beintema PhD Candidate

L. Cristi Iacob PhD Candidate

Roland Toth Associate Professor

Conclusions

Deep Subspace Encoder combines:

ANN state-space representations Multiple shooting / truncated simulation error State encoder / reconstructability map Batch optimization

Resulting in:

Cost function smoothness Good scaling with data size / dimension State-of-the-art benchmarking results Flexible to include other model representations (thanks to automatic differentiation)

Implementation available in Python DeepSI toolbox: https://github.com/GerbenBeintema/deepSI

