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Aim of this talk

Use AI (Statistical learning theory) and system identification
techniques to produce new solutions for estimating hybrid
systems
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Hybrid system identification

SISO arbritrarily switched ARX system:

yi︸︷︷︸
output

= fqi (x i ) + νi︸︷︷︸
noise

(1)

• x i = [yi−1, . . . , yi−na︸ ︷︷ ︸
past outputs

, ui︸︷︷︸
input

, . . . , ui−nb︸ ︷︷ ︸
past inputs

]T

• fj : the j-th submodel
• qi ∈ {1 . . .C}: active mode at time i

Problem:

Given a data set D = {(x i , yi )}ni=1 and a set of possible submodels F , estimate the
number of submodels C , the submodels fj in F , and the switching sequence
(qi )1≤i≤n.
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Literature for switched system identification

Methods for a fixed number of
modes C

• K-LinReg [Lauer, 2013]
• Algebraic Methods

[Vidal et al., 2003, Ozay et al., 2015]
• Others...

Methods that estimate C from a
threshold on the prediction error:

• Sparse Optimization [Bako, 2011]
• Sum-of-norm regularization

[Ohlsson and Ljung, 2013]
• Bounded-error approach

[Bemporad et al., 2005]

Challenge: Estimate the number of modes using techniques from
statistical learning
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Estimating the number of modes

Structural Risk Minimization:

• Model selection method from statistical learning
• Derive statistical guarantees on the prediction error
• Select the model with the best guarantees

→ Choose the number of modes C that minimizes an upper
bound on the prediction error
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Learning theory

Setting:
• A pair of random variables (X ,Y ) of unknown distribution
• A training set ((xi , yi ))1≤i≤N : a sample realization of N independent copies

(Xi ,Yi ) of (X ,Y )

• F a set of possible models

Typical form of distribution free risk bounds:
With probability at least 1− δ, for all f ∈ F :

L(f ) ≤ L̂n(f ) + ε(n,F , δ) (2)

• L(f ) = EX ,Y `(f ,X ,Y ): the risk or prediction error

• L̂n(f ) = 1
n

∑n
i=1 `(f ,Xi ,Yi ): the empirical risk

• ε(n,F , δ): a confidence interval to be defined

Typical loss for regression: `(f ,X ,Y ) = (Y − f (X ))2

for classification: `(f ,X ,Y ) = 1(X ) 6=Y
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Confidence interval

• The confidence interval ε(n,F , δ) depends on a measure of complexity of the
model

• Common complexity measures: VC-dimension, Rademacher Complexity,...
• Computed using statistical learning theory for i.i.d samples, depending on L:

L = {`f : `f (z) = `(f , x , y), f ∈ F} (3)

Rademacher complexity:

Empirical Rademacher complexity R̂Zn (L) = Eσn

[
sup
`∈L

1
n

n∑
i=1

σi `(Zi )

∣∣∣∣∣Zn

]
, (4)

with Zn = (Zi )1≤i≤n = ((Xi ,Yi ))1≤i≤n, and σn = (σi )1≤i≤n is a sequence of
Rademacher variables, i.e., random variables uniformly distributed in {−1,+1}.
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Rademacher complexity bound
Rademacher complexity:

Empirical Rademacher complexity R̂Zn (L) = Eσn

[
sup
`∈L

1
n

n∑
i=1

σi `(Zi )

∣∣∣∣∣Zn

]
, (5)

with Zn = (Zi )1≤i≤n = ((Xi ,Yi ))1≤i≤n, and σn = (σi )1≤i≤n is a sequence of
Rademacher variables, i.e., random variables uniformly distributed in {−1,+1}.

Theorem (Theorem 1 in [Mohri et al., 2018])
Let L be a class of functions from Z into [0,B] and Zn = (Zi )1≤i≤n be a sequence of
independent copies of the random variable Z ∈ Z. Then, for any fixed δ ∈ (0, 1), with
probability at least 1− δ, uniformly over all ` ∈ L,

EZ `(Z)︸ ︷︷ ︸
Risk

≤
1
n

n∑
i=1

`(Zi )︸ ︷︷ ︸
Empirical risk

+ 2R̂Zn (L) + 3B

√
log 2

δ

2n︸ ︷︷ ︸
Confidence interval

. (6)
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Example in linear regression
Consider the model class:

F = {f : f (x) = wTx , w ∈ Rd , ‖w‖ ≤ Rw}, (7)

And the loss function

L = {` ∈ [0, 4M2]Z : `(f , x , y) = |y − f (x)|p, f ∈ F}, (8)

with Y ∈ [−M,M].
Using a contraction argument ( [Ledoux and Talagrand, 1991]),

R̂Zn(L) ≤ p(2M)p−1R̂X n(F) (9)

Where, using standard computation of Rademacher complexity we
have

R̂X n(F) ≤
Rw

√∑n
i=1 ‖X i‖2
n

. (10)
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Example in switching linear regression
Consider the model class:

F = {f : f (x) = wTx , w ∈ Rd , ‖w‖ ≤ Rw}, (11)

And the loss function

L = {` ∈ [0, 4M2]Z : `(f , x , y) = min
j∈{1,...,C}

|y − fj(x)|p, fj ∈ F},

(12)
with Y ∈ [−M,M].
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x
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y

Figure: Switching regression
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Example in switching linear regression 2

Consider the model class:

F = {f : f (x) = wTx , w ∈ Rd , ‖w‖ ≤ Rw}, (13)

And the loss function

L = {` ∈ [0, 4M2]Z : `(f , x , y) = min
j∈{1,...,C}

|y − fj(x)|p, fj ∈ F},

(14)
with Y ∈ [−M,M].
Using Rademacher calculus [Lauer, 2020],

R̂Zn(L) ≤ p(2M)p−1C R̂X n(F) (15)
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Examples
Final prediction error bounds (in case p = 2):
• For linear regression

EX ,Y (Y −f (X ))2 ≤
1
n

n∑
i=1

(Yi−f (Xi ))2+
8MRw

√∑n
i=1 ‖X i‖2

n
+12M2

√
log 2

δ

2n
.

(16)

• For switching linear regression

EX ,Y min
j∈{1,...,C}

(Y − fj (X ))2 ≤
1
n

n∑
i=1

min
j∈{1,...,C}

(Yi − fj (Xi ))2 (17)

+
8MCRw

√∑n
i=1 ‖X i‖2

n
+ 12M2

√
log 2

δ

2n
,

with f = (f1, . . . , fC ).

Bound only valid in static case.

How can we adapt it for dynamical systems?
Louis Massucci GT Ident 2021 15 / 32



Hybrid system identification Estimating the number of modes Regularization Conclusions

Error bounds for dynamical system
Problem:

• For dynamical systems, i.i.d. assumption doesn’t hold

Proposed solution:

• Assume data are β-mixing
• Dependence between two data points decreases with the time

interval between them

• Independent blocks method [Yu, 1994]
• Dependency between odd blocks weakens with the size of

blocks
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Error bounds for dynamical system

Independent Blocks Method:

• Bound is derived using µ = n/2a blocks instead of n data points
[Mohri and Rostamizadeh, 2009]

• The confidence interval depends on a mixing coefficient β(a)

With probability at least 1− δ, for all f ∈ F :

L(f ) ≤L̂n(f ) + ε(n,F , δ) (i.i.d case) (18)

L(f ) ≤L̂n(f ) + ε(µ, β(a),F , δ) (non i.i.d case) (19)
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• Bound is derived using µ = n/2a blocks instead of n data points
[Mohri and Rostamizadeh, 2009]

• The confidence interval depends on a mixing coefficient β(a)

With probability at least 1− δ, for all f ∈ F :

L(f ) ≤L̂n(f ) + ε(n,F , δ) (i.i.d case) (18)

L(f ) ≤L̂n(f ) + ε(µ, β(a),F , δ) (non i.i.d case) (19)

→ Using the previous results on the Rademacher complexity for switching regression,
we obtain:

L(f ) ≤ L̂n(f ) + ε(C , µ, β(a),F , δ) (20)
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Proposed method to estimate C

Require: The data set D = {(x i , yi )}ni=1 and a maximum number of modes C

1: for C = 1 to C do
2: Run a generic algorithm to estimate a model f with C modes
3: Compute the error bound J(C)
4: end for
5: Select the "best" number of modes

Ĉ = arg min
C∈{1...C}

J(C)

6: return the selected model with Ĉ modes

With J(C ) = L̂n(f ) + ε(C , µ, β(a),F , δ)
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Numerical Experiment
Case study:

• switched ARX system
with C = 3 modes,
orders na = nb = 2

• n = 105 points
• Gaussian noise with

SNR = 10dB
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Numerical Experiment

Case study:

• switched ARX system
with C = 3 modes,
orders na = nb = 2

• n = 105 points
• Gaussian noise with

SNR = 10dB

Results with L1-loss and a block
size of a=2

L̂n(f ) versus C
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Numerical Experiment
Case study:

• switched ARX system
with C = 3 modes,
orders na = nb = 2

• n = 105 points
• Gaussian noise with

SNR = 10dB

Evaluation of the method
over 100 trials with colored
noise shows promising results
[Massucci et al., 2020]
Comparison with other
methods in
[Massucci et al., 2021]

Results with L1-loss and a block
size of a=2
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Regularization

What could be the benefits of regularization ?
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Regularization
A standard technique to control model complexity while learning
from data by minimizing a trade-off:

min
w∈RD

E(w ,X , y)︸ ︷︷ ︸
error term

+ λ Γ(w)︸ ︷︷ ︸
Regularization term

,

For switching systems:

E(w ,X, y) =
n∑

i=1

`(w , x i , yi )

with `(w , x i , yi ) = minj∈{1,...,C} |yi − wT
j x i |p for p ∈ {1, 2}

Γ(w) = ‖Ω(w)‖q

where Ω(w) = [‖w1‖2, . . . , ‖wC‖2]T , q ∈ {1, 2,∞}

λ > 0
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Regularization

A more fine-grained measure of complexity ‖Ω(w)‖q , where

∀q ∈ (0,∞], ‖Ω(w)‖q ≤ C max
j∈{1,...,C}

‖w j‖2 = ‖Ω(w)‖∞ (21)

Consequence of ‖Ω(w)‖q:
• Consider the number of submodels
• And the complexity of each submodels

Corresponding model class:

F(Rw ) =
{
f ∈ F0(Rw )C : ‖Ω(w)‖q ≤ Rw

}
, (22)
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Bound for regularized switching models

Use of [Lauer, 2020] leads to the following complexity term:

R̂Zµ(L) ≤ p(2M)p−1α(C , q)
Rw

√∑µ
i=1 ‖X 2a(i−1)+1‖2

µ
, (23)

where the dependence on C is now characterized by

α(C , q) =


C , if q =∞ (Previous case, independent submodels)

2
√
C , if q = 2 (Classic case)

1 + logC , if q = 1. (Sparse case)

(24)
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Numerical Experiment
Case study:

• q = 2, switched ARX system with C = 6 modes, orders na = nb = 2
• n = 3.105 points
• Gaussian noise with SNR = 30dB

Regularized J(C) versus C

2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

Massucci et al., "Regularized switched system identification: a statistical learning
perspective." ADHS21 for more details on regularization
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Conclusions

To summarize

• New error bounds for switched systems in the non-I.I.D. case
• New model selection method to estimate the number of modes
• Refined analysis with regularized model

Open issues

• Estimating the mixing coefficient β(a)

• Tighten the bounds to make the method more efficient with
less data
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Take-home message

Statistical learning theory can be used to produce
non-asymptotic error bounds for hybrid system identification
and a method to estimate the number of modes

Louis Massucci GT Ident 2021 28 / 32
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Comparison with algebraic methods

Figure: Guide to select a suitable method to
estimate C.

• ALG is Algebraic method for
noiseless data
[Vidal et al., 2003]

• ALG-N is Algebraic method
for noisy data

• SRM is Structural risk
minimization method
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