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Introduction

Nowadays, model-free techniques such as
reinforcement learning aim to learn a controller/policy
directly from data of a process to be controlled.

These techniques may require an unreasonably large
number of interactions with the process to determine a
reasonably performing controller. This is because the
data has to supply the lack of prior knowledge on the
process (usually encoded in a model).

In this talk, we develop preliminary tools for learning a
model of a process from an alternative source: data
from an existing controller or filter acting on it.

These tools will be described within the context of
“counter-adversarial systems”.
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Markov chains

A simple model of a dynamic sytem

Time: k

State: xk

Discrete state-space:

X = {1, . . . ,X}

Transition matrix:

[P]ij =P[xk+1 = j | xk = i]

Note: Depends only on current state
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Hidden Markov models (HMMs)

A Markov chain observed via an uncertain sensor

Observation: yk

Discrete observation space: Y = {1, . . . ,Y}

Observation matrix: [B]ij =P[yk = j | xk = i]
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Hidden Markov models (HMMs) (cont.)

Applications:
Social networks, speech recognition,

target tracking, intent modeling,

acoustics, computational biology,

climatology, finance and econometrics,

handwriting and text recognition,

image processing, computer vision,

time-series analysis, medicine, etc.

Generalizations:
Control: (partially observed) Markov decision processes
General state/observation spaces: Linear state-space
model, ...
. . .
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Counter-adversarial autonomous systems
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Counter-adversarial autonomous systems (cont.)

Abstraction:

HMM Estimate this

Goal of first part of the talk:
How to estimate the components of an adversary based on
different information sets (e.g., xk, ºk, or action)
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(Inverse) filtering

Usually interested in the state of an HMM, which is hidden:
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(Inverse) filtering (cont.)

Given observations y1, . . . ,yk, an HMM filter computes the
probability of the system being in each state at time k:

[ºk]i =P[xk = i | y1, . . . ,yk]

Schematically:
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(Inverse) filtering (cont.)

Given observations y1, . . . ,yk, an HMM filter computes the
probability of the system being in each state at time k:

[ºk]i =P[xk = i | y1, . . . ,yk]

Formally,

ºk =
diag(byk)PTºk°1

bT
ykPTºk°1

(byk :=B:,yk)
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Inverse filtering (cont.)

Question:

Given º1, . . . ,ºk, what can be said about

the parameters P and B?

the observations y1, . . . ,yk?
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Inverse filtering: Naïve solution

Assume P is known
Rewrite the HMM filter

ºk =
diag(byk)PTºk°1

bT
ykPTºk°1

as

(bT
yk

PTºk°1)ºk = diag(byk)PTºk°1

This equation holds for every update of ºk

Idea:
Can we find parameters consistent with data from an

optimization problem?
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Inverse filtering: Naïve solution (cont.)

Assume P is known and the HMM filter matches P, B:

Naïve solution: Optimization (feasibility) problem:

min
{yk}N

k=1,{bi}Y
i=1

NP
k=1

∞∞∞(bT
yk

PTºk°1)ºk °diag(byk)PTºk°1

∞∞∞
1

s.t. yk 2 {1, . . . ,Y}, k= 1, . . . ,N
bi   0, i= 1, . . . ,Y
[b1 · · · bY ]1= 1

Can be written as a mixed-integer linear program (MILP)
Question: Can we exploit structure to solve it efficiently?
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Inverse filtering: Efficient solution

Lemma
The HMM filter update equation

ºk =
BykPTºk°1

1TBykPTºk°1

can be equivalently written as
°
ºk[PTºk°1]T °diag[PTºk°1]

¢
byk = 0

What we want

Lemma
If P and B are positive matrices, then the nullspace of

ºk[PTºk°1]T °diag[PTºk°1]

has dimension 1.
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Inverse filtering: Efficient solution (cont.)

Algorithm:
1. For each k, compute a basis (vector) for the nullspace of

ºk[PTºk°1]T °diag[PTºk°1] (§)

2. Collect the different basis vectors into the columns of
matrix B, and normalize it so its rows sum to 1

3. For each k, check which column of B is contained in the
nullspace of (§) ) this yields yk (up to relabeling)
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Inverse filtering: Efficient solution (cont.)

Noisy case:
If the ºk’s are contaminated
by noise, estimating B yields
a clustering problem
(e.g., spherical K-means)

-1

-0.5

0

0.5

11

0.5

0

-0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.8

0.4

0.6

1

-1

Every nullspace is a noisy estimate of one column of B.
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Inverse filtering: Example

Sleep tracking
5 sleep stages: Wake, S1, S2, SWS,
REM
Wearables (Fitbit, Apple Watch, ...)
employ automatic sleep stagers

An HMM:
œ unobserved: sleep stage
œ observed: heart rate,

movement, ...

Inverse filtering:
Can a competitor’s sensor system be reverse engineered?
Medical equipment ! fault detection/cyber-security?

Result: We can reconstruct measurements and sensor!
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Inverse filtering: Example (cont.)

Sleep stages:
mean of HMM filter ºk

Doctor (“true state xk”)
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Inverse filtering: Example (cont.)

Results:

We reconstruct the measurements

Noise

We reconstruct the sensor
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Inverse filtering: Extensions

Extended to linear (Gaussian) dynamical systems
So far, we have solved the inverse filtering problem for
HMMs assuming that P is known
If only the posteriors º1, . . . ,ºk’s are known (but not P!),
we can still solve the problem!

Rough idea: HMM filter updates can be written as

(ºT
k°1 ≠ [ºk1

T ° I]) vec(diag(byk)PT)= 0

vec(diag(byk)PT) can be estimated by “clustering” the
nullspaces of matrices ºT

k°1 ≠ [ºk1
T ° I], using convex

optimization!
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Inverse filtering: Extensions (cont.)

Note: Inverse filtering does not require HMM filter to be
based on the true P, B matrices of the system and sensor,
i.e., there can be model mismatch!

I.e., given posteriors º1, . . . ,ºN , one can determine:
Pfilter, Bfilter matrices of the HMM filter, and
measurements y1, . . . ,yN
true system and sensor matrices Ptrue,Btrue, using EM
(Baum-Welch) algorithm, or spectral learning

25



Next subproblem

X
X

X
X

??
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Belief estimation in counter-adversarial setting

observations

adversary

action

posterior (belief) cost
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Belief estimation in portfolio selection
Belief Estimation
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Model

1. Adversary makes observation yk

2. Adversary computes posterior

[ºk]i =P[xk = i | y1, . . . ,yk]

using the HMM filter

3. Adversary selects an action by minimizing its expected
cost:

min
uk

E{c(xk,uk) | y1, . . . ,yk}=
XP

i=1
[ºk]ic(i,uk)

s.t. uk 2C

4. We observe the chosen action u§
k
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Belief estimation

Question: Given u§
k , how can the posterior ºk be estimated?

Idea:

Use inverse optimization:

œ Write down optimality (KKT) conditions
œ Find which value of ºk makes u§

k optimal
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Belief estimation: Solution

Theorem
Assume that for each fixed x, c(x,u) is convex and
differentiable in u, and that the constraint set C is affine:

C = {u 2RU : Au= b, u  0}, A 2RN£U , b 2RN .

Then, the exact set of private beliefs ºk 2RX of the agent who
made decision u§

k at time k is

¶k =

8
>>><
>>>:
º 2RX :

there exist ∏ 2RU , ∫ 2RN such that
ºT1= 1, º  0, ∏  0,
[∏]j = 0 if [u§

k ]i 6= 0 for j= 1, . . . ,U,PX
i=1[º]iruc(i,u§

k )°∏+AT∫= 0

9
>>>=
>>>;
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Belief estimation: Example

± True private belief ºk
– Set of consistent beliefs ¶k
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Belief estimation: Bayesian approach
Adversary PublicUs

System
P

Sensor
B

Filter
T

Policy
G

State
xk

Observation
�k

Posterior
�k

Action
uk

If the action uk and the state xk are known, as well as P, B,
T and G, one can estimate the belief ºk using a Bayesian
approach (i.e., as a distribution on the simplex)

Idea: Estimate ºk using a particle filter/smoother!
(this can handle more general cases, e.g., discrete actions,
randomized policies, etc.)

More details in:
R. Mattila, I. Lourenço, C.R.R., V. Krishnamurthy, and B. Wahlberg. “Estimating
private beliefs of Bayesian agents based on observed decisions”. IEEE L-CSS,
3(3):523-528, 2019.
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Belief estimation: Privacy protection

Question: How can we protect ourselves against an
adversary is attempting to reconstruct own belief?

World Sensor Filter Policy

Counter-Adversarial Decision Maker

Infor-
mation

BeliefState

xk Ik ⇡k
u

⇤
k, c

⇤
k

Belief
estimator ⇧(uk)

Adversary

Obfuscator

uk

uk, ck

Using an obfuscator!

Since the set ¶k of beliefs of the adversary can be computed,
we can perturb the optimal action u§

k so that ºk ›¶k

More details in:
I. Lourenço, R. Mattila, C.R.R., and B. Wahlberg. “How to protect your privacy? A
framework for counter-adversarial decision making”. CDC, 2020.
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Conclusions

Introduced several inverse problems on HMMs and
MDPs, including:

œ Inverse filtering for HMMs
œ Belief estimation

These problems are very relevant in machine learning,
as their solution allows to extract prior knowledge from
agents for use in reinforcement learning and control

Next steps:
œ Full problem: from actions + measurements to model!

(Identifiability issues, quantization of belief space, . . . )
œ Applications to healthcare (reverse-engineering medical

practitioners)
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Thank you for your attention.

Questions?
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