

Inverse filtering and other problems on Markov decision processes

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology Stockholm, Sweden

Joint work with Robert Mattila, Inês Lourenço, Bo Wahlberg and Vikram Krishnamurthy

> *French System Identification Group May 27, 2021*

Outline

[Introduction](#page-2-0)

[Background](#page-3-0)

[Inverse filtering](#page-8-0)

[Belief estimation](#page-22-0)

[Conclusions](#page-31-0)

Introduction

- Nowadays, model-free techniques such as reinforcement learning aim to learn a controller/policy directly from data of a process to be controlled.
- These techniques may require an unreasonably large number of interactions with the process to determine a reasonably performing controller. This is because the data has to supply the lack of prior knowledge on the process (usually encoded in a model).
- In this talk, we develop preliminary tools for learning a model of a process from an alternative source: data from an existing *controller* or *filter* acting on it.

These tools will be described within the context of "counter-adversarial systems".

Markov chains

A simple model of a dynamic sytem

- Time: *k*
- State: *xk*
- Discrete state-space:

$$
\mathcal{X} = \{1,\ldots,X\}
$$

• Transition matrix:

$$
[P]_{ij} = \mathbf{P}[x_{k+1} = j \mid x_k = i]
$$

Note: Depends only on current state

Hidden Markov models (HMMs)

A Markov chain observed via an uncertain sensor

- Observation: *yk*
- \bullet Discrete observation space: $\mathcal{Y} = \{1, \ldots, Y\}$
- \bullet Observation matrix: $[B]_{ij} = P[y_k = j \mid x_k = i]$

Hidden Markov models (HMMs) (cont.)

Applications:

Social networks, speech recognition, target tracking, intent modeling, acoustics, computational biology, climatology, finance and econometrics, handwriting and text recognition, image processing, computer vision, time-series analysis, medicine, etc.

Generalizations:

- Control: *(partially observed) Markov decision processes*
- General state/observation spaces: *Linear state-space model, ...*
- \bullet ...

Counter-adversarial autonomous systems

Counter-adversarial autonomous systems (cont.)

Abstraction:

Goal of first part of the talk:

How to estimate the components of an adversary based on different information sets (*e.g.*, x_k , π_k , or action)

(Inverse) filtering

Usually interested in the state of an HMM, which is hidden:

(Inverse) filtering (cont.)

Given observations y_1, \ldots, y_k , an **HMM filter** computes the probability of the system being in each state at time *k*:

(Inverse) filtering (cont.)

Given observations y_1, \ldots, y_k , an **HMM filter** computes the probability of the system being in each state at time *k*:

$$
[\pi_k]_i = P[x_k = i \mid y_1, \ldots, y_k]
$$

Formally,

$$
\pi_k = \frac{\text{diag}(b_{y_k})P^T \pi_{k-1}}{b_{y_k}^T P^T \pi_{k-1}} \qquad (b_{y_k} := B_{:y_k})
$$

Inverse filtering (cont.)

Question:

Given π_1, \ldots, π_k , what can be said about

- the parameters *P* and *B*?
- \bullet the observations y_1, \ldots, y_k ?

Inverse filtering: Naïve solution

Assume *P* is known Rewrite the HMM filter

$$
\pi_k = \frac{\text{diag}(b_{y_k})P^T \pi_{k-1}}{b_{y_k}^T P^T \pi_{k-1}}
$$

as

$$
(b_{y_k}^TP^T\pi_{k-1})\pi_k=\text{diag}(b_{y_k})P^T\pi_{k-1}
$$

This equation holds for every update of π_k

Idea:

Can we find parameters consistent with data from an optimization problem?

Inverse filtering: Naïve solution (cont.)

Assume *P* is known and the HMM filter matches *P*, *B*:

Naïve solution: Optimization (feasibility) problem:

$$
\min_{\{y_k\}_{k=1}^N, \{b_i\}_{i=1}^Y} \sum_{k=1}^N \left\| (b_{y_k}^T P^T \pi_{k-1}) \pi_k - \text{diag}(b_{y_k}) P^T \pi_{k-1} \right\|_{\infty}
$$
\n
$$
\text{s.t.} \quad y_k \in \{1, \dots, Y\}, \quad k = 1, \dots, N
$$
\n
$$
b_i \ge 0, \quad i = 1, \dots, Y
$$
\n
$$
[b_1 \cdots b_Y] \mathbb{1} = \mathbb{1}
$$

Can be written as a mixed-integer linear program (MILP) **Question:** Can we exploit structure to solve it efficiently?

Inverse filtering: Efficient solution

Lemma

The HMM filter update equation

$$
\pi_k = \frac{B_{y_k} P^T \pi_{k-1}}{\mathbb{I}^T B_{y_k} P^T \pi_{k-1}}
$$

What we want

can be equivalently written as

$$
(\pi_k [P^T \pi_{k-1}]^T - \text{diag}[P^T \pi_{k-1}]) b_{y_k} = 0
$$

Lemma

If P and B are positive matrices, then the nullspace of

$$
\pi_k[P^T\pi_{k-1}]^T - \text{diag}[P^T\pi_{k-1}]
$$

has dimension 1*.*

Inverse filtering: Efficient solution (cont.)

Algorithm:

1. For each *k*, compute a basis (vector) for the nullspace of

$$
\pi_k[P^T\pi_{k-1}]^T - \text{diag}[P^T\pi_{k-1}] \tag{*}
$$

- 2. Collect the different basis vectors into the columns of matrix *B*, and normalize it so its rows sum to 1
- 3. For each *k*, check which column of *B* is contained in the nullspace of $(*) \Rightarrow$ this yields y_k (up to relabeling)

Inverse filtering: Efficient solution (cont.)

Noisy case:

If the π_k 's are contaminated by noise, estimating *B* yields a **clustering problem** (*e.g.*, spherical K-means)

Every nullspace is a noisy estimate of one column of *B*.

Inverse filtering: Example

Sleep tracking

- 5 sleep stages: Wake, S1, S2, SWS, REM
- Wearables (Fitbit, Apple Watch, ...) employ *automatic sleep stagers*
- An HMM:
	- ► *unobserved*: sleep stage
	- ▶ *observed*: heart rate, movement, ...

Inverse filtering:

- Can a competitor's sensor system be *reverse engineered*?
- \bullet Medical equipment \rightarrow *fault detection/cyber-security*?

Result: We can reconstruct measurements and sensor!

Inverse filtering: Example (cont.)

Sleep stages:

Inverse filtering: Example (cont.)

Results:

Correctly recovered observations

Inverse filtering: Extensions

- Extended to *linear (Gaussian) dynamical systems*
- So far, we have solved the inverse filtering problem for HMMs **assuming that** *P* **is known**
- **•** If only the posteriors π_1, \ldots, π_k 's are known (*but not P!*), we can still solve the problem!

Rough idea: HMM filter updates can be written as

$$
(\pi^T_{k-1} \otimes [\pi_k \mathbb{1}^T - I]) \text{ vec}(diag(b_{y_k}) P^T) = 0
$$

vec(diag(b_{ν_k}) P^T) can be estimated by "clustering" the nullspaces of matrices $\pi_{k-1}^T \otimes [\pi_k \mathbb{1}^T - I]$, using convex optimization!

Inverse filtering: Extensions (cont.)

Note: Inverse filtering does **not** require HMM filter to be based on the *true P*, *B* matrices of the system and sensor, *i.e.*, there can be *model mismatch*!

I.e., given posteriors π_1, \ldots, π_N , one can determine:

- P_{filter} , B_{filter} matrices of the HMM filter, and measurements *y*1,...,*yN*
- true system and sensor matrices P_{true} , B_{true} , using EM (Baum-Welch) algorithm, or spectral learning

Next subproblem

Belief estimation in counter-adversarial setting

Belief estimation in portfolio selection Belief Estimation

Model

- 1. Adversary makes observation *yk*
- 2. Adversary computes posterior

$$
[\pi_k]_i = P[x_k = i \mid y_1, \ldots, y_k]
$$

using the HMM filter

3. Adversary selects an action by minimizing its expected cost:

$$
\min_{u_k} \quad \mathbf{E}\{c(x_k, u_k) \mid y_1, \dots, y_k\} = \sum_{i=1}^X [\pi_k]_i c(i, u_k)
$$
\n
$$
\text{s.t.} \quad u_k \in \mathscr{C}
$$

4. We observe the chosen action u_k^*

Belief estimation

Question: Given u_k^* , how can the posterior π_k be estimated?

Idea:

- Use inverse optimization:
	- \triangleright Write down optimality (KKT) conditions
	- Find which value of π_k makes u_k^* optimal

Belief estimation: Solution

Theorem

Assume that for each fixed x, c(*x*,*u*) *is convex and differentiable in u, and that the constraint set C is affine:*

$$
\mathscr{C} = \{u \in \mathbb{R}^U : Au = b, \ u \geq 0\}, \qquad A \in \mathbb{R}^{N \times U}, \ b \in \mathbb{R}^N.
$$

Then, the exact set of private beliefs $\pi_k \in \mathbb{R}^X$ *of the agent who made decision u*§ *^k at time k is*

$$
\Pi_k = \begin{cases}\n\text{there exist } \lambda \in \mathbb{R}^U, \ v \in \mathbb{R}^N \text{ such that} \\
\pi \in \mathbb{R}^X: \begin{array}{l}\n\pi^T \mathbb{1} = 1, \ \pi \ge 0, \ \lambda \ge 0, \\
[\lambda]_j = 0 \text{ if } [u_k^*]_i \ne 0 \text{ for } j = 1, \dots, U, \\
\sum_{i=1}^X [\pi]_i \nabla_u c(i, u_k^*) - \lambda + A^T v = 0\n\end{array}\n\end{cases}
$$

 \mathbf{a} $\overline{}$

 \vert

Belief estimation: Example

 \circ True private belief π_k – Set of consistent beliefs Π_k

Belief estimation: Bayesian approach

If the action u_k and the state x_k are known, as well as P, B , *T* and *G*, one can estimate the belief π_k using a Bayesian approach (*i.e.*, as a distribution on the simplex)

Idea: Estimate π_k using a *particle filter/smoother*! (this can handle more general cases, *e.g.*, discrete actions, randomized policies, *etc.*)

More details in:

R. Mattila, I. Lourenço, C.R.R., V. Krishnamurthy, and B. Wahlberg. "Estimating private beliefs of Bayesian agents based on observed decisions". *IEEE L-CSS*, 3(3):523-528, 2019.

Belief estimation: Privacy protection

Question: How can we protect ourselves against an adversary is attempting to reconstruct own belief?

Using an obfuscator!

Since the set Π_k of beliefs of the adversary can be computed, we can *perturb* the optimal action u_k^* so that $\pi_k \notin \Pi_k$

More details in:

I. Lourenço, R. Mattila, C.R.R., and B. Wahlberg. "How to protect your privacy? A framework for counter-adversarial decision making". *CDC*, 2020.

Conclusions

- Introduced several inverse problems on HMMs and MDPs, including:
	- \blacktriangleright Inverse filtering for HMMs
	- \blacktriangleright Belief estimation
- These problems are very relevant in machine learning, as their solution allows to extract prior knowledge from agents for use in reinforcement learning and control
- Next steps:
	- \blacktriangleright Full problem: from actions + measurements to model! (Identifiability issues, quantization of belief space, . . .)
	- Applications to healthcare (reverse-engineering medical practitioners)

References

- [1] R. Mattila, C.R.R., V. Krishnamurthy, and B. Wahlberg. "Inverse Filtering for Hidden Markov Models". *NIPS*, 2017.
- [2] R. Mattila, C.R.R., V. Krishnamurthy, and B. Wahlberg. "Inverse filtering for linear gaussian state-space models". *CDC*, 2018.
- [3] R. Mattila, I. Lourenço, C.R.R., V. Krishnamurthy, and B. Wahlberg. "Estimating private beliefs of Bayesian agents based on observed decisions". *IEEE L-CSS*, 3(3):523-528, 2019.
- [4] R. Mattila, I. Lourenço, V. Krishnamurthy, C.R.R., and B. Wahlberg. "What did your adversary believe? Optimal smoothing in counter-autonomous systems". *ICASSP*, 2020.
- [5] R. Mattila, C.R.R., V. Krishnamurthy, and B. Wahlberg. "Inverse filtering for hidden Markov models with applications to counter-adversarial autonomous systems". *IEEE TSP*, 68:4987-5002, 2020.
- [6] I. Lourenço, R. Mattila, C.R.R., and B. Wahlberg. "How to protect your privacy? A framework for counter-adversarial decision making". *CDC*, 2020.

Thank you for your attention.

Questions?