CT Identification

Optimal time invariant experiment design for regret minimization in linear quadratic adaptive control

Kévin Colin¹, Håkan Hjalmarsson¹, Xavier Bombois^{2,3}

¹ Division of Decision and Control Systems, KTH Royal Institute of Technology ² Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon ³ Centre National de la Recherche Scientifique (CNRS)

November 23, 2023

• **Objective**: design a model-based controller in order to reject the disturbances.

• Objective: design a model-based controller in order to reject the disturbances.

• True dynamics unknown...

• Model-based adaptive controller

- System identification ingredient for the estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Model-based adaptive controller

- System identification ingredients for the estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Model-based adaptive controller + large external excitation

- System identification ingredient for the estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Model-based adaptive controller + large external excitation

- System identification ingredient for the model parameter estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Model-based adaptive controller + a more appropriate external excitation

- System identification ingredient for the model parameter estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Model-based adaptive controller + a more appropriate external excitation

- System identification ingredient for the model parameter estimate $\hat{\theta}(t)$:
 - Data from the beginning of the experiment.
 - Full-order model structure (true parameter vector θ_0).

• Regret = function of both the exploitation and exploration costs to be minimized.

Regret = trade-off exploitation/exploration

• Regret = function of both the exploitation and exploration costs to be minimized.

• Regret = function of both the exploitation and exploration costs to be minimized.

• Expectation of each gap at time instant t =instantaneous regret.

• Regret = function of both the exploitation and exploration costs to be minimized.

- Expectation of each gap at time instant t = instantaneous regret.
- Sum of the instantaneous regrets = cumulative regret.

• Regret = function of both the exploitation and exploration costs to be minimized.

- Expectation of each gap at time instant t =instantaneous regret.
- Sum of the instantaneous regrets = cumulative regret.
- Objective: design an adaptive control algorithm minimizing the cumulative regret.

• Discrete-time state system with one input:

$$\begin{aligned} x(t+1) &= \mathbf{A}(\theta_0)x(t) + \mathbf{B}(\theta_0)u(t) + e(t) \\ e(t) &\sim N(0, \mathbf{\Sigma}_e) \end{aligned}$$

• Discrete-time state system with one input:

$$\begin{aligned} x(t+1) &= \mathbf{A}(\theta_0)x(t) + \mathbf{B}(\theta_0)u(t) + e(t) \\ e(t) &\sim N(0, \mathbf{\Sigma}_e) \end{aligned}$$

• Infinite horizon Linear Quadratic Control:

$$\begin{split} \tilde{u}(t) &= -\mathbf{K}(\theta_0)\tilde{x}(t) \\ \text{minimizing} & \lim_{T \to +\infty} \frac{1}{T}\sum_{t=1}^T \mathbb{E}[x(t)^\top \mathbf{Q} x(t) + \mathbf{R} u^2(t)]. \end{split}$$

• Discrete-time state system with one input:

$$\begin{aligned} x(t+1) &= \mathbf{A}(\theta_0)x(t) + \mathbf{B}(\theta_0)u(t) + e(t) \\ e(t) &\sim N(0, \mathbf{\Sigma}_e) \end{aligned}$$

• Infinite horizon Linear Quadratic Control:

$$\tilde{u}(t) = -\mathbf{K}(\theta_0)\tilde{x}(t)$$

minimizing $\lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[x(t)^{\top} \mathbf{Q} x(t) + \mathbf{R} u^2(t)].$

• $\mathbf{K}(\theta_0)$ computed by solving a discrete-time Riccati equation, but dependent on θ_0

• Model-based linear quadratic adaptive control:

$$\begin{split} u(t) &= -\mathbf{K}(t)x(t) + v(t) \\ \hat{\theta}(t): \text{ on-line least-squares estimator of } \theta_0 \text{ using past data } \{x(k), u(k)\}_{k=1}^t \\ v(t): \text{ user-defined external excitation} \end{split}$$

 $^{^1 {\}rm Wang}$ F. and Janson L., Exact asymptotics for linear quadratic adaptive control Journal of Machine Learning Research, 2021

• Model-based linear quadratic adaptive control:

$$\begin{split} u(t) &= -\mathbf{K}(t)x(t) + v(t) \\ \hat{\theta}(t): \text{ on-line least-squares estimator of } \theta_0 \text{ using past data } \{x(k), u(k)\}_{k=1}^t \\ v(t): \text{ user-defined external excitation} \end{split}$$

• Cumulative regret¹

$$r(T) = \sum_{t=1}^{T} (\underbrace{\mathbb{E}[x(t)^{\top} \mathbf{Q} x(t) + \mathbf{R} u(t)^{2}]}_{\text{Cost with adaptive control}} - \underbrace{\mathbb{E}[\tilde{x}(t)^{\top} \mathbf{Q} \tilde{x}(t) + \mathbf{R} \tilde{u}(t)^{2}]}_{\text{Optimal cost with } \mathbf{K}(\theta_{0}) \text{ and } v = 0})$$

where the expectation ${\mathbb E}$ is taken with respect to e and possibly v

 $^{^1 {\}rm Wang}$ F. and Janson L., Exact asymptotics for linear quadratic adaptive control Journal of Machine Learning Research, 2021

• Model-based linear quadratic adaptive control:

$$\begin{split} u(t) &= -\mathbf{K}(t)x(t) + v(t) \\ \hat{\theta}(t): \text{ on-line least-squares estimator of } \theta_0 \text{ using past data } \{x(k), u(k)\}_{k=1}^t \\ v(t): \text{ user-defined external excitation} \end{split}$$

• Cumulative regret¹

$$r(T) = \sum_{t=1}^{T} \underbrace{\left(\mathbb{E}[x(t)^{\top} \mathbf{Q} x(t) + \mathbf{R} u(t)^{2}]}_{\text{Cost with adaptive control}} - \underbrace{\mathbb{E}[\tilde{x}(t)^{\top} \mathbf{Q} \tilde{x}(t) + \mathbf{R} \tilde{u}(t)^{2}]}_{\text{Optimal cost with } \mathbf{K}(\theta_{0}) \text{ and } v = 0} \right)$$

where the expectation ${\mathbb E}$ is taken with respect to e and possibly v

Objective

Design the control policy $\hat{\theta}(t) \to \mathbf{K}(t)$ and the external excitation sequence $\{v(t)\}_{t=1}^{T}$ such that r(T) is minimized.

 $^{^1 \}rm Wang$ F. and Janson L., Exact asymptotics for linear quadratic adaptive control Journal of Machine Learning Research, 2021

• Several classes of adaptive control algorithms in the literature

Certainty equivalence

 $\hat{\theta}(t)$ assumed to be the true parameter vector θ_0 in the controller design.

Notations: $\mathbf{K}(\hat{\theta}(t))$

• Several classes of adaptive control algorithms in the literature

Certainty equivalence

 $\hat{\theta}(t) \text{ assumed to be the true} \\ \text{parameter vector } \theta_0 \text{ in the controller} \\ \text{design.}$

Notations: $\mathbf{K}(\hat{\theta}(t))$

Optimism in the Face of Uncertainties

From the set of parameter uncertainties $\delta \hat{\theta}(t)$, minimize the lower bound of the regret

 $\min_{\substack{\mathbf{K}(t) \\ v(t)}} \min_{\delta\theta(t)} r(T, \delta\theta(t))$

Often intractable

• Mostly: results in the asymptotic domain.

²I. Ziemann and H. Sandberg. Regret lower bounds for learning linear quadratic Gaussian systems ³Y. Jedra and A. Proutiere. Minimal expected regret in linear quadratic control. In International Conference on Artificial Intelligence and Statistics, pages 10234–10321. PMLR, 2022

- Mostly: results in the asymptotic domain.
- Minimal rate for the regret r(T) is^{2 3}
 - $\mathcal{O}(\sqrt{T})$ if both \mathbf{A}_0 and \mathbf{B}_0 are unknown.
 - $\mathcal{O}(\log(T))$ if either \mathbf{A}_0 or \mathbf{B}_0 is known.

²I. Ziemann and H. Sandberg. Regret lower bounds for learning linear quadratic Gaussian systems ³Y. Jedra and A. Proutiere. Minimal expected regret in linear quadratic control. In International Conference on Artificial Intelligence and Statistics, pages 10234–10321. PMLR, 2022

• How to reach this optimal rate?

 $^{^4 \}rm Y.$ Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...
 - ... until the estimate uncertainties are below a given threshold...

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...
 - ... until the estimate uncertainties are below a given threshold...
 - ... a new controller is computed by randomly drawing a parameter vector in the uncertain set...

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...
 - ... until the estimate uncertainties are below a given threshold...
 - ... a new controller is computed by randomly drawing a parameter vector in the uncertain set...
 - ... and we reiterate.

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...
 - ... until the estimate uncertainties are below a given threshold...
 - ... a new controller is computed by randomly drawing a parameter vector in the uncertain set...
 - ... and we reiterate.
- \bullet Certainty equivalence + an external excitation 5 of the form

$$v(t) \sim N\left(0, \frac{a}{\sqrt{t}}\right) \qquad a > 0$$

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

- How to reach this optimal rate?
- Optimism in Face of Uncertainties: Thompson sampling without external excitation⁴
 - Controller kept constant during several time instants...
 - ... until the estimate uncertainties are below a given threshold...
 - ... a new controller is computed by randomly drawing a parameter vector in the uncertain set...
 - ... and we reiterate.
- \bullet Certainty equivalence + an external excitation 5 of the form

$$v(t) \sim N\left(0, \frac{a}{\sqrt{t}}\right) \qquad a > 0$$

• Question: What about finite-time regret minimization? (not clear what is optimal)

⁴Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

⁵F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

Inspiration from application-oriented experiment design

• Linear time-invariant Application-oriented experiment design^{6 7 8} = design a finite-time (horizon T) excitation minimizing the expected value of a given cost.

⁶X. Bombois, G. Scorletti, M. Gevers , P.M.J. Van den Hof, R. Hildebrand: Least costly identification experiment for control. Automatica 42(10), 1651–1662 (2006)

 $^{^{7}}$ H. Jansson (2004). Experiment design with applications in identification for control (Doctoral dissertation, Signaler, sensorer och system).

⁸H. Hjalmarsson: System identification of complex and structured systems. European Journal of Control 15(4), 275–310 (2009).

Inspiration from application-oriented experiment design

• Linear time-invariant Application-oriented experiment design^{6 7 8} = design a finite-time (horizon T) excitation minimizing the expected value of a given cost.

Problem/Approach of this talk

Using the tools from **linear time-invariant** experiment design, can we develop an algorithm for finite-time regret minimization ?

⁶X. Bombois, G. Scorletti, M. Gevers , P.M.J. Van den Hof, R. Hildebrand: Least costly identification experiment for control. Automatica 42(10), 1651–1662 (2006)

⁷H. Jansson (2004). Experiment design with applications in identification for control (Doctoral dissertation, Signaler, sensorer och system).

 $^{^{8}\}text{H}.$ Hjalmarsson: System identification of complex and structured systems. European Journal of Control 15(4), 275–310 (2009).

Inspiration from application-oriented experiment design

• Linear time-invariant Application-oriented experiment design^{6 7 8} = design a finite-time (horizon T) excitation minimizing the expected value of a given cost.

Problem/Approach of this talk

Using the tools from **linear time-invariant** experiment design, can we develop an algorithm for finite-time regret minimization ?

• How???

 $^{^6} X.$ Bombois, G. Scorletti, M. Gevers , P.M.J. Van den Hof, R. Hildebrand: Least costly identification experiment for control. Automatica 42(10), 1651–1662 (2006)

⁷H. Jansson (2004). Experiment design with applications in identification for control (Doctoral dissertation, Signaler, sensorer och system).

⁸H. Hjalmarsson: System identification of complex and structured systems. European Journal of Control 15(4), 275–310 (2009).

A reformulation into time-invariant experiment design problem

• Solution⁹: Design by intervals of "large" duration N ($T = n_{int}N$)

Kévin Colin (DCS, KTH)

CT Identification

⁹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).
A reformulation into time-invariant experiment design problem

• Solution⁹: Design by intervals of "large" duration N ($T = n_{int}N$)

Kévin Colin (DCS, KTH)

⁹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

A reformulation into time-invariant experiment design problem

• Solution⁹: Design by intervals of "large" duration N ($T = n_{int}N$)

Kévin Colin (DCS, KTH)

CT Identification

⁹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Notations:

$$t = kN + 1$$
 Interval k $t = (k+1)N$

• Notations:

$$t = kN + 1$$
 Interval k $t = (k+1)N$

$$\hat{\theta}_k \sim N(\theta_0, \mathcal{I}_k^{-1})$$

• Notations:

 $\hat{\theta}_k \sim N(\theta_0, \mathcal{I}_k^{-1})$

• Notations:

• Assumption 1: we have an initial estimate $\hat{\theta}_1 \sim N(\theta_0, \mathcal{I}_1^{-1})$ (if not, perform an initial identification).

• Notations:

• Assumption 1: we have an initial estimate $\hat{\theta}_1 \sim N(\theta_0, \mathcal{I}_1^{-1})$ (if not, perform an initial identification).

• Assumption 2: all the future controllers $\{\mathbf{K}(\hat{\theta}_k)\}_{k=2}^{n_{int}}$ stabilize the loop.

Kévin Colin (DCS, KTH)

• Let us rewrite the regret

$$r(T) = \sum_{k=1}^{n_{int}} r_k$$
$$r_k = \sum_{\tau=1}^{N} (\mathbb{E}[x_k(\tau)^\top \mathbf{Q} x_k(\tau) + \mathbf{R} u_k(\tau)^2] - \mathbb{E}[\tilde{x}_k(\tau)^\top \mathbf{Q} \tilde{x}_k(\tau) + \mathbf{R} \tilde{u}_k(\tau)^2])$$

• Let us rewrite the regret

$$r(T) = \sum_{k=1}^{n_{int}} r_k$$
$$r_k = \sum_{\tau=1}^{N} (\mathbb{E}[x_k(\tau)^\top \mathbf{Q} x_k(\tau) + \mathbf{R} u_k(\tau)^2] - \mathbb{E}[\tilde{x}_k(\tau)^\top \mathbf{Q} \tilde{x}_k(\tau) + \mathbf{R} \tilde{u}_k(\tau)^2])$$

• Given a stationary signal y(t) with large number $N \gg 1$ of data y(t), we have

$$\sum_{t=1}^{N} y(t)^{\top} y(t) \approx N ||y||^2$$

• Let us rewrite the regret

$$r(T) = \sum_{k=1}^{n_{int}} r_k$$
$$r_k = \sum_{\tau=1}^{N} (\mathbb{E}[x_k(\tau)^\top \mathbf{Q} x_k(\tau) + \mathbf{R} u_k(\tau)^2] - \mathbb{E}[\tilde{x}_k(\tau)^\top \mathbf{Q} \tilde{x}_k(\tau) + \mathbf{R} \tilde{u}_k(\tau)^2])$$

 \bullet Given a stationary signal y(t) with large number $N\gg 1$ of data y(t), we have

$$\sum_{t=1}^{N} y(t)^{\top} y(t) \approx N ||y||^2$$

 $r_k \approx N\mathbb{E}[||x_k||_{\mathbf{Q}}^2 + ||u_k||_{\mathbf{R}}^2 - ||\tilde{x}_k||_{\mathbf{Q}}^2 - ||\tilde{u}_k||_{\mathbf{R}}^2]$ if $N \gg 1$.

• Linear system:

• Linear system:

Adaptive loop :
$$x_k = x_{e,k} + x_{v,k}$$
 $u_k = u_{e,k} + u_{v,k}$ Ideal loop : $\tilde{x}_k = \tilde{x}_{e,k}$ $\tilde{u}_k = \tilde{u}_{e,k}$

• Stationary stochastic v_k independent from e_k , we have

$$r_k \approx N(r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) + r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)))$$

$$\begin{split} r_{e,k}(\theta_0,\mathbf{K}(\hat{\theta}_k)) &= \mathbb{E}[||x_{e,k}||_{\mathbf{Q}}^2 + ||u_{e,k}||_{\mathbf{R}}^2 - ||\tilde{x}_{e,k}||_{\mathbf{Q}}^2 - ||\tilde{u}_{e,k}||_{\mathbf{R}}^2] \quad \longrightarrow \quad \text{exploitation regret} \\ r_{v,k}(\theta_0,\mathbf{K}(\hat{\theta}_k)) &= \mathbb{E}[||x_{v,k}||_{\mathbf{Q}}^2 + ||u_{v,k}||_{\mathbf{R}}^2] \quad \longrightarrow \quad \text{exploration regret} \end{split}$$

$$\begin{aligned} \mathbf{T}_{xe}(z,\theta_0,\mathbf{K}) &= (z\mathbf{I} - (\mathbf{A}(\theta_0) - \mathbf{B}(\theta_0)\mathbf{K}))^{-1} \\ \mathbf{T}_{xv}(z,\theta_0,\mathbf{K}) &= \mathbf{T}_{xe}(z,\theta_0,\mathbf{K})\mathbf{B}(\theta_0) \\ \mathbf{T}_{ue}(z,\theta_0,\mathbf{K}) &= -\mathbf{K}\mathbf{T}_{xe}(z,\theta_0,\mathbf{K}) \\ \mathbf{T}_{uv}(z,\theta_0,\mathbf{K}) &= \mathbf{I} - \mathbf{K}\mathbf{T}_{xe}(z,\theta_0,\mathbf{K})\mathbf{B}(\theta_0) \end{aligned}$$

• $N \gg 1 \rightarrow$ transient dynamics from controller changes are negligible in r_k .

- $N \gg 1 \rightarrow$ transient dynamics from controller changes are negligible in r_k .
- Consequence:

$$\begin{aligned} r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{R}}^2] \\ &- \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{Q}}^2 - ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{R}}^2] \\ r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{uv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{R}}^2] \end{aligned}$$

- $N \gg 1 \rightarrow$ transient dynamics from controller changes are negligible in r_k .
- Consequence:

$$\begin{aligned} r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{R}}^2] \\ &- \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{Q}}^2 - ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{R}}^2] \\ r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{uv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{R}}^2] \end{aligned}$$

 \rightarrow we design the power spectrum densities (PSD) ϕ_{v_k} of each v_k .

- $N \gg 1 \rightarrow$ transient dynamics from controller changes are negligible in r_k .
- Consequence:

$$\begin{aligned} r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))e_k||_{\mathbf{R}}^2] \\ &- \mathbb{E}[||\mathbf{T}_{xe}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{Q}}^2 - ||\mathbf{T}_{ue}(z, \theta_0, \mathbf{K}(\theta_0))e_k||_{\mathbf{R}}^2] \\ r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &\approx \mathbb{E}[||\mathbf{T}_{xv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{uv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{R}}^2] \end{aligned}$$

 \rightarrow we design the power spectrum densities (PSD) ϕ_{v_k} of each v_k .

First objective

Reformulate the regret minimization problem as a convex optimization problem in the PSDs $\phi_{v_1}, \dots, \phi_{v_{n_{int}}}$.

• We have to make ϕ_{v_k} appear in both $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ and $r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$.

- We have to make ϕ_{v_k} appear in both $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ and $r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$.
- Exploration regret \rightarrow Parseval's theorem:

$$\begin{split} r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &= \mathbb{E}[||\mathbf{T}_{xv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{uv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{R}}^2] \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega}, \theta_0, \mathbf{K}(\hat{\theta}_k))] \phi_{v_k}(\omega) d\omega \end{split}$$

- We have to make ϕ_{v_k} appear in both $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ and $r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$.
- \bullet Exploration regret \rightarrow Parseval's theorem:

$$\begin{split} r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) &= \mathbb{E}[||\mathbf{T}_{xv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{Q}}^2 + ||\mathbf{T}_{uv}(z, \theta_0, \mathbf{K}(\hat{\theta}_k))v_k||_{\mathbf{R}}^2] \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega}, \theta_0, \mathbf{K}(\hat{\theta}_k))] \phi_{v_k}(\omega) d\omega \end{split}$$

where

$$\mathcal{D}(e^{j\omega},\theta_0,\mathbf{K}(\hat{\theta}_k)) = \mathbf{T}_{xv}^*(e^{j\omega},\theta_0,\mathbf{K}(\hat{\theta}_k))\mathbf{Q}\mathbf{T}_{xv}(e^{j\omega},\theta_0,\mathbf{K}(\hat{\theta}_k)) + R|\mathbf{T}_{uv}(e^{j\omega},\theta_0,\mathbf{K}(\hat{\theta}_k))|^2$$

• Exploitation regret $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$: linked to uncertainties $\mathbb{E}[(\hat{\theta}_k - \theta_0)(\hat{\theta}_k - \theta_0)^\top] =$ inverse of the Fisher information matrix \mathcal{I}_k which depends linearly¹⁰ on $\phi_{v_1}, \dots, \phi_{v_{k-1}}$.

¹⁰M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Exploitation regret $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$: linked to uncertainties $\mathbb{E}[(\hat{\theta}_k - \theta_0)(\hat{\theta}_k - \theta_0)^{\top}] =$ inverse of the Fisher information matrix \mathcal{I}_k which depends linearly¹⁰ on $\phi_{v_1}, \dots, \phi_{v_{k-1}}$.

• Observation: the global minimum of $\hat{\theta}_k \to r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ is minimum 0 and it is reached at $\hat{\theta}_k = \theta_0$ (LQ control property).

¹⁰M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Exploitation regret $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$: linked to uncertainties $\mathbb{E}[(\hat{\theta}_k - \theta_0)(\hat{\theta}_k - \theta_0)^{\top}] =$ inverse of the Fisher information matrix \mathcal{I}_k which depends linearly¹⁰ on $\phi_{v_1}, \dots, \phi_{v_{k-1}}$.

• Observation: the global minimum of $\hat{\theta}_k \to r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ is minimum 0 and it is reached at $\hat{\theta}_k = \theta_0$ (LQ control property).

• Second-order Taylor expansion of $\hat{\theta}_k \to r_{e,k}(\theta_0,\mathbf{K}(\hat{\theta}_k))$ evaluated at θ_0

$$r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) \approx \frac{1}{2} \mathbb{E}[(\hat{\theta}_k - \theta_0)^\top \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))(\hat{\theta}_k - \theta_0)]$$
$$\approx \frac{1}{2} \operatorname{tr}(\mathbf{W}(\theta_0, \mathbf{K}(\theta_0)) \mathcal{I}_k(\phi_{v_1}, \cdots, \phi_{v_{k-1}})^{-1})$$

¹⁰M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Exploitation regret $r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$: linked to uncertainties $\mathbb{E}[(\hat{\theta}_k - \theta_0)(\hat{\theta}_k - \theta_0)^\top] =$ inverse of the Fisher information matrix \mathcal{I}_k which depends linearly¹⁰ on $\phi_{v_1}, \cdots, \phi_{v_{k-1}}$.

• Observation: the global minimum of $\hat{\theta}_k \to r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ is minimum 0 and it is reached at $\hat{\theta}_k = \theta_0$ (LQ control property).

• Second-order Taylor expansion of $\hat{\theta}_k \to r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k))$ evaluated at θ_0

$$r_{e,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) \approx \frac{1}{2} \mathbb{E}[(\hat{\theta}_k - \theta_0)^\top \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))(\hat{\theta}_k - \theta_0)]$$
$$\approx \frac{1}{2} \operatorname{tr}(\mathbf{W}(\theta_0, \mathbf{K}(\theta_0)) \mathcal{I}_k(\phi_{v_1}, \cdots, \phi_{v_{k-1}})^{-1})$$

• With $\mathbf{H}(k) \succeq \mathbf{W}(\theta_0, \mathbf{K}(\hat{\theta}_k))^{1/2} \mathcal{I}_k(\phi_{v_1}, \cdots, \phi_{v_{k-1}})^{-1} \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2}$, minimizing $r_{e,k}(\theta_0, \mathbf{K}(\theta_0))$ is equivalent to minimizing $\operatorname{tr}(\mathbf{H}(k))$ such that

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_k(\phi_{\boldsymbol{v}_1}, \cdots, \phi_{\boldsymbol{v}_{k-1}}) \end{pmatrix} \succeq 0$$

Kévin Colin (DCS, KTH)

¹⁰M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Problem to be solved:

$$\min_{\boldsymbol{\phi}_{\boldsymbol{v}_{k}},\mathbf{H}(k)} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + r_{v,k}(\theta_{0},\mathbf{K}(\hat{\theta}_{k})) \right)$$

Subject to, for each $k = 1, \cdots, n_{int}$

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_k(\phi_{\boldsymbol{v}_1}, \cdots, \phi_{\boldsymbol{v}_{k-1}}) \end{pmatrix} \succeq 0 \\ r_{\boldsymbol{v},k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega}, \theta_0, \mathbf{K}(\hat{\theta}_k))] \phi_{\boldsymbol{v}_k}(\omega) d\omega$$

• Problem to be solved:

$$\min_{\boldsymbol{\phi}_{\boldsymbol{v}_k}, \mathbf{H}(k)} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + r_{\boldsymbol{v},k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) \right)$$

Subject to, for each $k = 1, \dots, n_{int}$

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_k(\phi_{v_1}, \cdots, \phi_{v_{k-1}}) \end{pmatrix} \succeq 0 \\ r_{v,k}(\theta_0, \mathbf{K}(\hat{\theta}_k)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega}, \theta_0, \mathbf{K}(\hat{\theta}_k))] \phi_{v_k}(\omega) d\omega$$

• With an adequate parametrization of each ϕ_{v_k} , we can transform the problem into a convex semi-definite programming (SDP).

• Problem to be solved:

$$\begin{split} \min_{\boldsymbol{\phi}_{\boldsymbol{v}_{k}},\mathbf{H}(k)} & N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + r_{v,k}(\theta_{0},\mathbf{K}(\hat{\theta}_{k})) \right) \\ \mathbf{Subject to, for each } k = 1, \cdots, n_{int} \\ & \left(\begin{array}{c} \mathbf{H}(k) & \mathbf{W}(\theta_{0},\mathbf{K}(\theta_{0}))^{1/2} \\ \mathbf{W}(\theta_{0},\mathbf{K}(\theta_{0}))^{1/2} & \mathcal{I}_{k}(\boldsymbol{\phi}_{v_{1}},\cdots,\boldsymbol{\phi}_{v_{k-1}}) \end{array} \right) \succeq 0 \\ & r_{v,k}(\theta_{0},\mathbf{K}(\hat{\theta}_{k})) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega},\theta_{0},\mathbf{K}(\hat{\theta}_{k}))] \boldsymbol{\phi}_{\boldsymbol{v}_{k-1}}(\omega) d\omega \end{split}$$

• Problem to be solved:

$$\begin{split} & \min_{\boldsymbol{\phi}_{\boldsymbol{v}_{k}},\mathbf{H}(k)} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + r_{\boldsymbol{v},k}(\boldsymbol{\theta}_{0},\mathbf{K}(\hat{\boldsymbol{\theta}}_{k})) \right) \\ & \mathbf{Subject to, for each } k = 1, \cdots, n_{int} \\ & \left(\begin{array}{c} \mathbf{H}(k) & \mathbf{W}(\boldsymbol{\theta}_{0},\mathbf{K}(\boldsymbol{\theta}_{0}))^{1/2} \\ \mathbf{W}(\boldsymbol{\theta}_{0},\mathbf{K}(\boldsymbol{\theta}_{0}))^{1/2} & \mathcal{I}_{k}(\boldsymbol{\phi}_{\boldsymbol{v}_{1}},\cdots,\boldsymbol{\phi}_{\boldsymbol{v}_{k-1}}) \end{array} \right) \succeq 0 \\ & r_{\boldsymbol{v},k}(\boldsymbol{\theta}_{0},\mathbf{K}(\hat{\boldsymbol{\theta}}_{k})) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega},\boldsymbol{\theta}_{0},\mathbf{K}(\hat{\boldsymbol{\theta}}_{k}))] \boldsymbol{\phi}_{\boldsymbol{v}_{k-1}}(\boldsymbol{\omega}) d\boldsymbol{\omega} \end{split}$$

• Observation 1: the estimate $\hat{\theta}_{n_{int}}$ of the last interval does not depend on $v_{n_{int}}$. Hence, $v_{n_{int}}$ only penalizes the regret... We should set it to 0.

• Problem to be solved:

$$\begin{split} & \min_{\boldsymbol{\phi} \boldsymbol{v}_{k}, \mathbf{H}(k)} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + r_{v,k}(\theta_{0}, \mathbf{K}(\hat{\theta}_{k})) \right) \\ & \mathbf{Subject to, for each } k = 1, \cdots, n_{int} \\ & \left(\begin{array}{c} \mathbf{H}(k) & \mathbf{W}(\theta_{0}, \mathbf{K}(\theta_{0}))^{1/2} \\ \mathbf{W}(\theta_{0}, \mathbf{K}(\theta_{0}))^{1/2} & \mathcal{I}_{k}(\boldsymbol{\phi}_{v_{1}}, \cdots, \boldsymbol{\phi}_{v_{k-1}}) \end{array} \right) \succeq 0 \\ & r_{v,k}(\theta_{0}, \mathbf{K}(\hat{\theta}_{k})) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega}, \theta_{0}, \mathbf{K}(\hat{\theta}_{k}))] \boldsymbol{\phi}_{v_{k-1}}(\omega) d\omega \end{split}$$

• Observation 1: the estimate $\hat{\theta}_{n_{int}}$ of the last interval does not depend on $v_{n_{int}}$. Hence, $v_{n_{int}}$ only penalizes the regret... We should set it to 0.

• Observation 2: the estimate $\hat{\theta}_1$ of the first interval does not depend on any v_k . Hence, $tr(\mathbf{H}(1)) = constante$. We can remove this term and the corresponding LMI.

• Problem to be solved:

$$\begin{split} \min_{\boldsymbol{\phi}\boldsymbol{v}_{k},\mathbf{H}(k)} N & \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2}\operatorname{tr}(\mathbf{H}(k)) + r_{v,k}(\theta_{0},\mathbf{K}(\hat{\theta}_{k}))\right) \\ \mathbf{Subject to, for each } k = 1, \cdots, n_{int} - 1 \\ \begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_{0},\mathbf{K}(\theta_{0}))^{1/2} \\ \mathbf{W}(\theta_{0},\mathbf{K}(\theta_{0}))^{1/2} & \mathcal{I}_{k}(\boldsymbol{\phi}\boldsymbol{v}_{1},\cdots,\boldsymbol{\phi}\boldsymbol{v}_{k}) \end{pmatrix} \succeq 0 \\ r_{v,k}(\theta_{0},\mathbf{K}(\hat{\theta}_{k})) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{E}[\mathcal{D}(e^{j\omega},\theta_{0},\mathbf{K}(\hat{\theta}_{k}))] \boldsymbol{\phi}_{v_{k}}(\omega) d\omega \end{split}$$

• Observation 1: the estimate $\hat{\theta}_{n_{int}}$ of the last interval does not depend on $v_{n_{int}}$. Hence, $v_{n_{int}}$ only penalizes the regret... We should set it to 0.

• Observation 2: the estimate $\hat{\theta}_1$ of the first interval does not depend on any v_k . Hence, $tr(\mathbf{H}(1)) = constante$. We can remove this term and the corresponding LMI.

$$\phi_{v_k}(\omega) = c_0(k) + 2\sum_{q=1}^m c_q(k)\cos(q\omega)$$

• $\phi_{v_k}(\omega) \ge 0 \ \forall \omega \in]-\pi,\pi]$ guaranteed if and only if it exists $\mathbf{Z}(k) = \mathbf{Z}(k)^\top$

$$\begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^{\top}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{0}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0$$

with

$$\boldsymbol{\mathcal{A}} = \begin{pmatrix} 0_{1 \times (m-1)} & 1\\ 0_{(m-1) \times (m-1)} & 0_{(m-1) \times 1} \end{pmatrix} \qquad \boldsymbol{\mathcal{B}} = \begin{pmatrix} 1\\ 0_{(m-1) \times 1} \end{pmatrix} \qquad \boldsymbol{c}_{1:m}(k) = \begin{pmatrix} c_1(k)\\ \vdots\\ c_m(k) \end{pmatrix}$$

(Positive real lemma)

Kévin Colin (DCS, KTH)

$$\min_{\substack{\mathbf{Z}(k)=\mathbf{Z}(k)^{\mathsf{T}}\\c_q(k),\mathbf{H}(k)}} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\theta_0, \mathbf{K}(\hat{\theta}_k)) c_q(k) \right)$$

Subject to , for each $k = 1, \cdots, n_{int}$,

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_1 + \sum_{i=1}^{k-1} \mathcal{L}_e(\theta_0, \mathbf{K}(\hat{\theta}_i)) + \sum_{i=1}^{k-1} \sum_{q=0}^m c_q(i) \mathcal{L}_{v,q}(\theta_0, \mathbf{K}(\hat{\theta}_i)) \\ \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^\top \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^\top \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^\top(k) - \mathcal{B}^\top \mathbf{Z}(k) \mathcal{A} & c_0(k) - \mathcal{B}^\top \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0 \end{cases}$$

$$\min_{\substack{\mathbf{Z}(k)=\mathbf{Z}(k)^{\top}\\c_q(k),\mathbf{H}(k)}} N \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\theta_0, \mathbf{K}(\hat{\theta}_k)) c_q(k) \right)$$

Subject to , for each $k = 1, \cdots, n_{int} - 1$,

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_1 + \sum_{i=1}^k \mathcal{L}_e(\theta_0, \mathbf{K}(\hat{\theta}_i)) + \sum_{i=1}^k \sum_{q=0}^m c_q(i) \mathcal{L}_{v,q}(\theta_0, \mathbf{K}(\hat{\theta}_i)) \\ \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^\top \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^\top \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^\top(k) - \mathcal{B}^\top \mathbf{Z}(k) \mathcal{A} & c_0(k) - \mathcal{B}^\top \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0 \end{cases}$$

Kévin Colin (DCS, KTH)

CT Identification

$$\begin{split} & \min_{\substack{\mathbf{Z}(k) = \mathbf{Z}(k)^{\top} \\ c_q(k), \mathbf{H}(k)}} N \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\theta_0, \mathbf{K}(\hat{\theta}_k)) c_q(k) \right) \\ & \text{Subject to , for each } k = 1, \cdots, n_{int} - 1, \end{split}$$

 $\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_1 + \sum_{i=1}^k \mathcal{L}_e(\theta_0, \mathbf{K}(\hat{\theta}_i)) + \sum_{i=1}^k \sum_{q=0}^m c_q(i)\mathcal{L}_{v,q}(\theta_0, \mathbf{K}(\hat{\theta}_i)) \\ \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^\top \mathbf{Z}(k)\mathcal{A} & c_{1:m}(k) - \mathcal{A}^\top \mathbf{Z}(k)\mathcal{B} \\ c_{1:m}^\top(k) - \mathcal{B}^\top \mathbf{Z}(k)\mathcal{A} & c_0(k) - \mathcal{B}^\top \mathbf{Z}(k)\mathcal{B} \end{pmatrix} \succeq 0 \end{cases}$

Kévin Colin (DCS, KTH)

CT Identification
$$\begin{split} & \underset{c_q(k),\mathbf{H}(k)}{\min} N \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\theta_0, , \mathbf{K}(\hat{\theta}_k)) c_q(k) \right) \\ & \mathbf{Subject to}, \text{ for each } k = 1, \cdots, n_{int} - 1, \\ & \begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} \\ \mathbf{W}(\theta_0, \mathbf{K}(\theta_0))^{1/2} & \mathcal{I}_1 + \sum_{i=1}^{k} \mathcal{L}_e(\theta_0, \mathbf{K}(\hat{\theta}_i)) + \sum_{i=1}^{k} \sum_{q=0}^{m} c_q(i) \mathcal{L}_{v,q}(\theta_0, \mathbf{K}(\hat{\theta}_i)) \end{pmatrix} \succeq 0 \\ & \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^{\top}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{0}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0 \end{split}$$

22 / 40

$$\frac{\min_{\mathbf{Z}(k)=\mathbf{Z}(k)^{\top}} N \sum_{k=1}^{n_{int}} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\boldsymbol{\theta}_0, \mathbf{K}(\hat{\boldsymbol{\theta}}_k)) c_q(k) \right)$$

Subject to , for each $k = 1, \cdots, n_{int} - 1$,

$$\begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\boldsymbol{\theta}_{0}, \mathbf{K}(\boldsymbol{\theta}_{0}))^{1/2} \\ \mathbf{W}(\boldsymbol{\theta}_{0}, \mathbf{K}(\boldsymbol{\theta}_{0}))^{1/2} & \mathcal{I}_{1} + \sum_{i=1}^{k-1} \mathcal{L}_{e}(\boldsymbol{\theta}_{0}, \mathbf{K}(\hat{\boldsymbol{\theta}}_{i})) + \sum_{i=1}^{k} \sum_{q=0}^{m} c_{q}(i) \mathcal{L}_{v,q}(\boldsymbol{\theta}_{0}, \mathbf{K}(\hat{\boldsymbol{\theta}}_{i})) \\ \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^{\top}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{0}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0 \end{cases}$$

• Problem 1: we don't know θ_0 ...

$$\begin{split} & \underset{\substack{\mathbf{Z}(k) = \mathbf{Z}(k)^{\top} \\ c_{q}(k), \mathbf{H}(k)}{\min} N \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_{q}(\theta_{0}, \mathbf{K}(\hat{\theta}_{k}))c_{q}(k) \right) \\ & \mathbf{Subject to} , \text{ for each } k = 1, \cdots, n_{int} - 1, \\ & \begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\theta_{0}, \mathbf{K}(\hat{\theta}_{k}))^{1/2} \\ \mathbf{W}(\theta_{0}, \mathbf{K}(\hat{\theta}_{k}))^{1/2} & \mathcal{I}_{1} + \sum_{i=1}^{k} \mathcal{L}_{e}(\theta_{0}, \mathbf{K}(\hat{\theta}_{i})) + \sum_{i=1}^{k} \sum_{q=0}^{m} c_{q}(i) \mathcal{L}_{v,q}(\theta_{0}, \mathbf{K}(\hat{\theta}_{i})) \end{pmatrix} \succeq 0 \\ & \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{1:m}(k) - \mathcal{A}^{\top} \mathbf{Z}(k) \mathcal{B} \\ c_{1:m}^{\top}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{A} & c_{0}(k) - \mathcal{B}^{\top} \mathbf{Z}(k) \mathcal{B} \end{pmatrix} \succeq 0 \end{split}$$

• Problem 1: we don't know θ_0 ...

• Problem 2: $\mathbf{K}(\hat{\theta}_2), \cdots, \mathbf{K}(\hat{\theta}_{n_{int}})$ unknown as well (nonlinear function of the $c_q(k)$)...

$$\begin{split} & \underset{\substack{\mathbf{Z}(k) = \mathbf{Z}(k)^{\top} \\ c_q(k), \mathbf{H}(k)}{\min} N \sum_{k=1}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(k)) + \sum_{q=0}^{m} \beta_q(\hat{\theta}_1, \mathbf{K}(\hat{\theta}_1)) c_q(k) \right) \\ & \mathbf{Subject to} \text{, for each } k = 1, \cdots, n_{int} - 1, \\ & \begin{pmatrix} \mathbf{H}(k) & \mathbf{W}(\hat{\theta}_1, \mathbf{K}(\hat{\theta}_1))^{1/2} \\ \mathbf{W}(\hat{\theta}_1, \mathbf{K}(\hat{\theta}_1))^{1/2} & \mathcal{I}_1 + k\mathcal{L}_e(\hat{\theta}_1, \mathbf{K}(\hat{\theta}_1)) + \sum_{i=1}^{k} \sum_{q=0}^{m} c_q(i)\mathcal{L}_{v,q}(\hat{\theta}_1, \mathbf{K}(\hat{\theta}_1)) \end{pmatrix} \succeq 0 \\ & \begin{pmatrix} \mathbf{Z}(k) - \mathcal{A}^{\top} \mathbf{Z}(k)\mathcal{A} & c_{1:m}(k) - \mathcal{A}^{\top} \mathbf{Z}(k)\mathcal{B} \\ c_{1:m}^{-1}(k) - \mathcal{B}^{\top} \mathbf{Z}(k)\mathcal{A} & c_{0}(k) - \mathcal{B}^{\top} \mathbf{Z}(k)\mathcal{B} \end{pmatrix} \succeq 0 \end{split}$$

- Problem 1: we don't know θ_0 ...
- Problem 2: $\mathbf{K}(\hat{\theta}_2), \cdots, \mathbf{K}(\hat{\theta}_{n_{int}})$ unknown as well (nonlinear function of the $c_q(k)$)...
- Solution: we replace θ_0 and all future estimates $\hat{\theta}_k$.

• Once the SDP is solved, we should excite the control loop with the signals $v_k = \mathbf{F}_k^{opt}(z) w.$

¹¹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Once the SDP is solved, we should excite the control loop with the signals $v_k = \mathbf{F}_k^{opt}(z) w.$

 \bullet However, the design is done based on $\hat{\theta}_1$ which might not be an accurate estimate of $\theta_0...$

¹¹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Once the SDP is solved, we should excite the control loop with the signals $v_k = \mathbf{F}_k^{opt}(z) w.$

 \bullet However, the design is done based on $\hat{\theta}_1$ which might not be an accurate estimate of $\theta_0...$

- Observation:
 - $\hat{\theta}_2$ is expected to be less uncertain than $\hat{\theta}_1$.
 - $\hat{\theta}_3$ is expected to be less uncertain than $\hat{\theta}_2$.

etc.

¹¹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Once the SDP is solved, we should excite the control loop with the signals $v_k = \mathbf{F}_k^{opt}(z) w.$

 \bullet However, the design is done based on $\hat{\theta}_1$ which might not be an accurate estimate of $\theta_0...$

- Observation:
 - $\hat{\theta}_2$ is expected to be less uncertain than $\hat{\theta}_1$.
 - $\hat{\theta}_3$ is expected to be less uncertain than $\hat{\theta}_2$.

etc.

• Idea: receding horizon design¹¹ of the PSDs ϕ_{v_k} .

¹¹M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

 $\hat{ heta}_2$ ${\mathcal I}_2$

• At the beginning of any interval k, we have to

 $^{^{12}}$ X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.

 $^{^{12}}$ X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).

 $^{^{12}}$ X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval $\boldsymbol{k},$ we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.

 $^{^{12}}$ X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.

¹²X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.
 - solve the SDP.

¹²X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.
 - solve the SDP.
 - do the spectral factorization of $\phi_{v_k}^{opt}$.

¹²X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

- At the beginning of any interval $\boldsymbol{k},$ we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.
 - solve the SDP.
 - do the spectral factorization of $\phi_{v_k}^{opt}$.

• Stability? Since $\hat{\theta}_k \sim N(\theta_0, \mathcal{I}_k^{-1})$, we can check¹² if $\mathbf{K}(\hat{\theta}_k)$ stabilizes the system given a probability α .

¹²X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636
A computationally expensive exploration scheme...

- At the beginning of any interval $\boldsymbol{k},$ we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.
 - solve the SDP.
 - do the spectral factorization of $\phi_{v_k}^{opt}$.

• Stability? Since $\hat{\theta}_k \sim N(\theta_0, \mathcal{I}_k^{-1})$, we can check¹² if $\mathbf{K}(\hat{\theta}_k)$ stabilizes the system given a probability α .

• If the stability test fails, we set $\hat{\theta}_k = \hat{\theta}_{k-1}$.

¹²X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

A computationally expensive exploration scheme...

- At the beginning of any interval k, we have to
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - compute the Hessian $\mathbf{W}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{W}$ (finite differentiation).
 - compute the exploration coefficients $\beta_q(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \beta_q$.
 - compute the Fisher matrices $\mathcal{L}_e(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_e$ and $\mathcal{L}_{v,q}(\hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathcal{L}_{v,q}$.
 - solve the SDP.
 - do the spectral factorization of $\phi_{v_k}^{opt}$.

• Stability? Since $\hat{\theta}_k \sim N(\theta_0, \mathcal{I}_k^{-1})$, we can check¹² if $\mathbf{K}(\hat{\theta}_k)$ stabilizes the system given a probability α .

• If the stability test fails, we set $\hat{\theta}_k = \hat{\theta}_{k-1}$.

• Everything has to be done within a duration less than the available sampling time!

 $^{^{12}}$ X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636

• State system with $n_x = 3$ states with

$$\mathbf{A}_{0} = \begin{pmatrix} -0.39 & 0.37 & -0.57 \\ -0.25 & -0.78 & -0.08 \\ 1.32 & 0.25 & -0.13 \end{pmatrix} \qquad \mathbf{B}_{0} = \begin{pmatrix} 0.21 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{\Sigma}_{e} = \mathbf{I}_{3}$$

Kévin Colin (DCS, KTH)

CT Identification

 \bullet Model structure: each entry of both matrices parameterized independently \rightarrow 12 parameters.

- \bullet Model structure: each entry of both matrices parameterized independently \rightarrow 12 parameters.
- Control parameters $\mathbf{Q} = \mathbf{I}_3$ and $\mathbf{R} = 0.2$.

- \bullet Model structure: each entry of both matrices parameterized independently \rightarrow 12 parameters.
- Control parameters $\mathbf{Q} = \mathbf{I}_3$ and $\mathbf{R} = 0.2$.
- We choose T = 500, N = 1 and $n_{int} = 500$.

- \bullet Model structure: each entry of both matrices parameterized independently \rightarrow 12 parameters.
- Control parameters $\mathbf{Q} = \mathbf{I}_3$ and $\mathbf{R} = 0.2$.
- We choose T = 500, N = 1 and $n_{int} = 500$.
- Initial estimate: open-loop identification with 12 data and a white noise input with a variance equal to 1.

m	Computation time
0	50 min
1	2 h 20 min
2	4 h 27 min
3	7 h 49 min
4	12 h 4 min
5	17 h 49 min

Table: Computation for one noise realization from t = 1 till t = 500 and different FIR order m.

m	Computation time
0	50 min
1	2 h 20 min
2	4 h 27 min
3	7 h 49 min
4	12 h 4 min
5	17 h 49 min

Table: Computation for one noise realization from t = 1 till t = 500 and different FIR order m.

• Too long...

m	Computation time
0	50 min
1	2 h 20 min
2	4 h 27 min
3	7 h 49 min
4	12 h 4 min
5	17 h 49 min

Table: Computation for one noise realization from t = 1 till t = 500 and different FIR order m.

- Too long...
- Main reason: the SDP has many variables and constraints, especially at the beginning.

m	Computation time
0	50 min
1	2 h 20 min
2	4 h 27 min
3	7 h 49 min
4	12 h 4 min
5	17 h 49 min

Table: Computation for one noise realization from t = 1 till t = 500 and different FIR order m.

- Too long...
- Main reason: the SDP has many variables and constraints, especially at the beginning.

Second objective of the talk

Reduction of the computation complexity of the exploration scheme

Kévin Colin (DCS, KTH)

Exploration coefficients β_q

$$\beta_q = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) \cos(q\omega) d\omega$$

where

 $\mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{T}^*_{xv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k))\mathbf{Q}\mathbf{T}_{xv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) + \mathbf{R}|\mathbf{T}_{uv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k))|^2$

Exploration coefficients β_q

$$\beta_q = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) \cos(q\omega) d\omega$$

where

 $\mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{T}^*_{xv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) \mathbf{Q} \mathbf{T}_{xv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) + \mathbf{R} |\mathbf{T}_{uv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k))|^2$

Result on LQ control property

$$\mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{R} + \mathbf{B}(\hat{\theta}_k)^\top \mathbf{P}(\hat{\theta}_k) \mathbf{B}(\hat{\theta}_k)$$

where $\mathbf{P}(\hat{\theta}_k)$ is the solution of the discrete-time algebraic Riccati equation involved in the computation of $\mathbf{K}(\hat{\theta}_k)$.

Exploration coefficients β_q

$$\beta_q = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) \cos(q\omega) d\omega$$

where

 $\mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{T}_{xv}^*(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) \mathbf{Q} \mathbf{T}_{xv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) + \mathbf{R} |\mathbf{T}_{uv}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k))|^2$

Result on LQ control property

$$\mathcal{D}(e^{j\omega}, \hat{\theta}_k, \mathbf{K}(\hat{\theta}_k)) = \mathbf{R} + \mathbf{B}(\hat{\theta}_k)^\top \mathbf{P}(\hat{\theta}_k) \mathbf{B}(\hat{\theta}_k)$$

where $\mathbf{P}(\hat{\theta}_k)$ is the solution of the discrete-time algebraic Riccati equation involved in the computation of $\mathbf{K}(\hat{\theta}_k)$.

• Consequence: $\beta_0 = \mathbf{R} + \mathbf{B}(\hat{\theta}_k)^\top \mathbf{P}(\hat{\theta}_k) \mathbf{B}(\hat{\theta}_k)$ and $\beta_q = 0$ for any $q \ge 1$.

• The SDP to be solved at the beginning of any interval k is simplified to:

$$\begin{split} & \underset{c_{q}(l)=\mathbf{Z}(l)^{\top}}{\min} N \sum_{l=k}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(l)) + \beta_{0}c_{0}(l) \right) \\ & \mathbf{Subject to} , \text{ for each } l = k, \cdots, n_{int} - 1, \\ & \begin{pmatrix} \mathbf{H}(l) & \mathbf{W}^{1/2} \\ \mathbf{W}^{1/2} & \mathcal{I}_{k} + (l-k+1)\mathcal{L}_{e} + \sum_{i=k}^{l} \sum_{q=0}^{m} c_{q}(i)\mathcal{L}_{v,q} \end{pmatrix} \succeq 0 \\ & \begin{pmatrix} \mathbf{Z}(l) - \mathcal{A}^{\top}\mathbf{Z}(l)\mathcal{A} & c_{1:m}(l) - \mathcal{A}^{\top}\mathbf{Z}(l)\mathcal{B} \\ c_{1:m}^{\top}(l) - \mathcal{B}^{\top}\mathbf{Z}(l)\mathcal{A} & c_{0}(l) - \mathcal{B}^{\top}\mathbf{Z}(l)\mathcal{B} \end{pmatrix} \succeq 0 \end{split}$$

• The SDP to be solved at the beginning of any interval k is simplified to:

$$\begin{split} & \underset{\substack{\mathbf{Z}(l) = \mathbf{Z}(l) \\ c_q(l), \mathbf{H}(l)}{\min} N \sum_{l=k}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(l)) + \beta_0 c_0(l) \right) \\ & \mathbf{Subject to} \text{, for each } l = k, \cdots, n_{int} - 1, \\ & \left(\frac{\mathbf{H}(l) \qquad \mathbf{W}^{1/2}}{\mathbf{W}^{1/2}} \mathcal{I}_k + (l-k+1)\mathcal{L}_e + \sum_{i=k}^l \sum_{q=0}^m c_q(i)\mathcal{L}_{v,q} \right) \succeq 0 \\ & \left(\frac{\mathbf{Z}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{A} \qquad c_{1:m}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{B}}{c_{1:m}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{A} \qquad c_{0}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{B}} \right) \succeq 0 \end{split}$$

• Still a lot of variables and constraints...

• The SDP to be solved at the beginning of any interval k is simplified to:

$$\begin{split} & \underset{\substack{\mathbf{Z}(l) = \mathbf{Z}(l)^{\top} \\ c_q(l), \mathbf{H}(l)}{\min} N \sum_{l=k}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(l)) + \beta_0 c_0(l) \right) \\ & \mathbf{Subject to} , \text{ for each } l = k, \cdots, n_{int} - 1, \\ & \left(\frac{\mathbf{H}(l) \qquad \mathbf{W}^{1/2} \\ \mathbf{W}^{1/2} \quad \mathcal{I}_k + (l-k+1)\mathcal{L}_e + \sum_{i=k}^l \sum_{q=0}^m c_q(i)\mathcal{L}_{v,q} \right) \succeq 0 \\ & \left(\frac{\mathbf{Z}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{A} \quad c_{1:m}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{B} \\ c_{1:m}^{\top}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{A} \quad c_{0}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{B} \right) \succeq 0 \end{split}$$

• Still a lot of variables and constraints... but we can remove a lot of them!

• The SDP to be solved at the beginning of any interval k is simplified to:

$$\begin{split} & \underset{\substack{\mathbf{Z}(l) = \mathbf{Z}(l)^{\top} \\ c_q(l), \mathbf{H}(l)}{\min} N \sum_{l=k}^{n_{int}-1} \left(\frac{1}{2} \operatorname{tr}(\mathbf{H}(l)) + \beta_0 c_0(l) \right) \\ & \mathbf{Subject to} , \text{ for each } l = k, \cdots, n_{int} - 1, \\ & \left(\frac{\mathbf{H}(l) \qquad \mathbf{W}^{1/2} \\ \mathbf{W}^{1/2} \quad \mathcal{I}_k + (l-k+1)\mathcal{L}_e + \sum_{i=k}^l \sum_{q=0}^m c_q(i)\mathcal{L}_{v,q} \right) \succeq 0 \\ & \left(\frac{\mathbf{Z}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{A} \quad c_{1:m}(l) - \mathcal{A}^{\top} \mathbf{Z}(l)\mathcal{B} \\ c_{1:m}^{\top}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{A} \quad c_{0}(l) - \mathcal{B}^{\top} \mathbf{Z}(l)\mathcal{B} \right) \succeq 0 \end{split}$$

• Still a lot of variables and constraints... but we can remove a lot of them!

Theorem

The solution of the SDP guarantee $\phi_{v_{k+1}}^{opt} = \cdots = \phi_{v_{n_{int}-1}}^{opt} = 0$, i.e., the next intervals are not excited!

Proved from dual theory.

Result: theoretical result on the structure of the solution of the SDP

Condition for lazy exploration

The PSD ϕ_{v_k} for the current interval k satisfies $\phi_{v_k}=0$ if and only if

$$\beta_0 \ge \frac{N}{2} \lambda_{\max} \left(\sum_{l=k}^{n_{int}-1} \mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k)) \right)$$

where $\mathcal{T}(\zeta_0(k), \dots, \zeta_m(k))$ is the Toeplitz symmetric matrix whose first row is $(\zeta_0(k), \dots, \zeta_m(k))$ with

$$\zeta_q(k) = \operatorname{tr}(\mathbf{W}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1}\mathcal{L}_{v,q}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1})$$

Result: theoretical result on the structure of the solution of the SDP

Condition for lazy exploration

The PSD ϕ_{v_k} for the current interval k satisfies $\phi_{v_k}=0$ if and only if

$$\beta_0 \ge \frac{N}{2} \lambda_{\max} \left(\sum_{l=k}^{n_{int}-1} \mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k)) \right)$$

where $\mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k))$ is the Toeplitz symmetric matrix whose first row is $(\zeta_0(k), \cdots, \zeta_m(k))$ with

$$\zeta_q(k) = \operatorname{tr}(\mathbf{W}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1}\mathcal{L}_{v,q}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1})$$

• Advantage: checking this inequality is faster than solving the SDP.

Result: theoretical result on the structure of the solution of the SDP

Condition for lazy exploration

The PSD ϕ_{v_k} for the current interval k satisfies $\phi_{v_k}=0$ if and only if

$$\beta_0 \ge \frac{N}{2} \lambda_{\max} \left(\sum_{l=k}^{n_{int}-1} \mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k)) \right)$$

where $\mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k))$ is the Toeplitz symmetric matrix whose first row is $(\zeta_0(k), \cdots, \zeta_m(k))$ with

$$\zeta_q(k) = \operatorname{tr}(\mathbf{W}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1}\mathcal{L}_{v,q}(\mathcal{I}_k + (l-k+1)\mathcal{L}_e)^{-1})$$

- Advantage: checking this inequality is faster than solving the SDP.
- Interpretation: we don't need to excite at all if
 - the information $\mathcal{I}_k + (l-k)\mathcal{L}_e$ obtained without excitation is large.
 - the main eigenvectors of its inverse are perpendicular to the ones of W.
 - the exploration penalization coefficient β_0 is large.
 - the number $n_{int} k + 1$ of remaining intervals is small.

• At the beginning of any interval k, we

- \bullet At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.

- At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - perform the stability test and set $\hat{\theta}_k = \hat{\theta}_{k-1}$ if it fails.

- At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - perform the stability test and set $\hat{\theta}_k = \hat{\theta}_{k-1}$ if it fails.
 - compute the Hessian W.

- At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - perform the stability test and set $\hat{\theta}_k = \hat{\theta}_{k-1}$ if it fails.
 - compute the Hessian W.
 - compute the exploration coefficient β_0 .

- At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - perform the stability test and set $\hat{\theta}_k = \hat{\theta}_{k-1}$ if it fails.
 - compute the Hessian W.
 - compute the exploration coefficient β_0 .
 - compute the Fisher matrices \mathcal{L}_e and $\mathcal{L}_{v,q}$.

- At the beginning of any interval k, we
 - identify $\hat{\theta}_k$ and the controller $\mathbf{K}(\hat{\theta}_k)$.
 - perform the stability test and set $\hat{\theta}_k = \hat{\theta}_{k-1}$ if it fails.
 - compute the Hessian W.
 - compute the exploration coefficient β_0 .
 - compute the Fisher matrices \mathcal{L}_e and $\mathcal{L}_{v,q}$.
 - check if

$$\beta_0 \ge \overline{\lambda} \left(\sum_{l=k}^{n_{int}} \mathcal{T}(\zeta_0(k), \cdots, \zeta_m(k)) \right)$$

If it is true, set $v_k = 0$. Otherwise solve the SDP by removing all the variables and constraints of the PSD $\phi_{v_{k+1}}, \ldots, \phi_{v_{n_{int}}}$ and then use spectral factorization on $\phi_{v_k}^{opt}$.

Numerical result

• Let us now consider back the numerical example combined with the three results $(n_x = 3, n_\theta = 12, N = 1 \text{ and } n_{int} = 500).$

FIR order m	Before	After
0	50 min	19.9 s
1	2 h 20 min	20.7 s
2	4 h 27 min	28.2 s
3	7 h 49 min	29.3 s
4	12 h 4 min	35.7 s
5	17 h 49 min	39.6 s

Table: Computation times obtained with the naive approach with the receding horizon strategy for one noise realization from t = 1 till t = 500 and different FIR order m.

• Change of settings: T = 100000, N = 1000, $n_{int} = 100$.

 \bullet Initial open-loop identification experiment with 200 data and a white Gaussian noise excitation of variance 0.1.

 \bullet Comparison of the proposed scheme with the Thompson sampling approach 13 and the certainity equivalence approach 14 with

$$v(t) \sim N\left(0, \frac{a}{\sqrt{t}}\right)$$

• 100 Monte Carlo simulations with different realizations for e and w (same for initial estimate) in order to approximate the expectation operator in the regret expression.

• a tuned by using a gridding approach so that r(T) is minimized.

Kévin Colin (DCS, KTH)

¹³Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1198–1205. IEEE, 201

¹⁴F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine Learning Research, 22(265):1–112, 2021

Method	r(T)
$1/\sqrt{t}$ -decaying exploration	30393
Thompson sampling	28823
Proposed scheme with $m = 0$	26490
Proposed scheme with $m = 1$	26333
Proposed scheme with $m = 2$	26290
Proposed scheme with $m = 3$	24973

• Even though AF3E beats all the other methods, it performs the worst during the first half of the experiment (due to jumping phenomenon at the beginning)...

Kévin Colin (DCS, KTH)

CT Identification

Average of the excitation power

• After $t \ge 9000$, the proposed scheme stopped exciting \rightarrow all the exploration effort is done at the beginning.

Kévin Colin (DCS, KTH)

Numerical example

• With m = 3, we excite well the resonance of the system.

• Formulation of the regret minimization problem in the linear quadratic adaptive framework as a linear time invariant experiment design problem by intervals.

¹⁵M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Formulation of the regret minimization problem in the linear quadratic adaptive framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

¹⁵M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Formulation of the regret minimization problem in the linear quadratic adaptive framework as a linear time invariant experiment design problem by intervals.

- Reduction of the computation time of the proposed scheme.
- Numerical example: the proposed scheme can beat other exploration strategies of the literature.

¹⁵M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Formulation of the regret minimization problem in the linear quadratic adaptive framework as a linear time invariant experiment design problem by intervals.

- Reduction of the computation time of the proposed scheme.
- Numerical example: the proposed scheme can beat other exploration strategies of the literature.
- \bullet A drawback: the aggressive exploration strategy for the first intervals can saturate the output and/or the input.

¹⁵M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

• Formulation of the regret minimization problem in the linear quadratic adaptive framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the literature.

 \bullet A drawback: the aggressive exploration strategy for the first intervals can saturate the output and/or the input.

- Some possible solutions to be investigated:
 - add input/output constraints which can be transformed into a LMI.
 - consider a worst-case design¹⁵ of the external excitation.

¹⁵M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based control. Automatica, 52:118–124 (2015).

Thank you for you attention!