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The problem

• Objective: design a model-based controller in order to reject the disturbances.

• True dynamics unknown...
Data from the beginning of the experiment.
Full-order model structure with parameter vector θ (true parameter vector θ0).
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The problem

• Model-based adaptive controller

• System identification ingredient for the estimate θ̂(t):
Data from the beginning of the experiment.
Full-order model structure (true parameter vector θ0).
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Regret = trade-off exploitation/exploration

• Regret = function of both the exploitation and exploration costs to be minimized.

• Expectation of each gap at time instant t = instantaneous regret.

• Sum of the instantaneous regrets = cumulative regret.

• Objective: design an adaptive control algorithm minimizing the cumulative regret.
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Considered problem

• Discrete-time state system with one input:

x(t + 1) = A(θ0)x(t) + B(θ0)u(t) + e(t)
e(t) ∼ N(0, Σe)

• Infinite horizon Linear Quadratic Control:

ũ(t) = −K(θ0)x̃(t)

minimizing lim
T →+∞

1
T

∑T

t=1 E[x(t)⊤Qx(t) + Ru2(t)].

• K(θ0) computed by solving a discrete-time Riccati equation, but dependent on θ0....
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ũ(t) = −K(θ0)x̃(t)

minimizing lim
T →+∞

1
T

∑T

t=1 E[x(t)⊤Qx(t) + Ru2(t)].

• K(θ0) computed by solving a discrete-time Riccati equation, but dependent on θ0....

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 6 / 40



Considered problem

• Model-based linear quadratic adaptive control:

u(t) = −K(t)x(t) + v(t)

θ̂(t) : on-line least-squares estimator of θ0 using past data {x(k), u(k)}t
k=1

v(t) : user-defined external excitation

• Cumulative regret1

r(T ) =
T∑

t=1

(E[x(t)⊤Qx(t) + Ru(t)2]︸ ︷︷ ︸
Cost with adaptive control

− E[x̃(t)⊤Qx̃(t) + Rũ(t)2]︸ ︷︷ ︸
Optimal cost with K(θ0) and v = 0

)

where the expectation E is taken with respect to e and possibly v

Objective
Design the control policy θ̂(t) → K(t) and the external excitation sequence {v(t)}T

t=1
such that r(T ) is minimized.

1Wang F. and Janson L., Exact asymptotics for linear quadratic adaptive control Journal of Machine
Learning Research, 2021
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Optimal cost with K(θ0) and v = 0

)

where the expectation E is taken with respect to e and possibly v

Objective
Design the control policy θ̂(t) → K(t) and the external excitation sequence {v(t)}T

t=1
such that r(T ) is minimized.

1Wang F. and Janson L., Exact asymptotics for linear quadratic adaptive control Journal of Machine
Learning Research, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 7 / 40



Considered problem

• Several classes of adaptive control algorithms in the literature

Certainty equivalence
θ̂(t) assumed to be the true

parameter vector θ0 in the controller
design.

Notations: K(θ̂(t))

Optimism in the Face of Uncertainties
From the set of parameter uncertainties δθ̂(t),

minimize the lower bound of the regret

min
K(t)
v(t)

min
δθ(t)

r(T, δθ(t))

Often intractable
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Literature on LQ regret minimization

• Mostly: results in the asymptotic domain.

• Minimal rate for the regret r(T ) is2 3

O(
√

T ) if both A0 and B0 are unknown.
O(log(T )) if either A0 or B0 is known.

2I. Ziemann and H. Sandberg. Regret lower bounds for learning linear quadratic Gaussian systems
3Y. Jedra and A. Proutiere. Minimal expected regret in linear quadratic control. In International Conference

on Artificial Intelligence and Statistics, pages 10234–10321. PMLR, 2022
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Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...

... until the estimate uncertainties are below a given threshold...

... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...

... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...

... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)

4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In
2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Literature on LQ regret minimization

• How to reach this optimal rate?

• Optimism in Face of Uncertainties: Thompson sampling without external excitation4

Controller kept constant during several time instants...
... until the estimate uncertainties are below a given threshold...
... a new controller is computed by randomly drawing a parameter vector in the
uncertain set...
... and we reiterate.

• Certainty equivalence + an external excitation5 of the form

v(t) ∼ N

(
0,

a√
t

)
a > 0

• Question: What about finite-time regret minimization? (not clear what is optimal)
4Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In

2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

5F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 10 / 40



Inspiration from application-oriented experiment design

• Linear time-invariant Application-oriented experiment design6 7 8= design a
finite-time (horizon T ) excitation minimizing the expected value of a given cost.

Problem/Approach of this talk
Using the tools from linear time-invariant experiment design, can we develop an
algorithm for finite-time regret minimization ?

• How???

6X. Bombois, G. Scorletti, M. Gevers , P.M.J. Van den Hof, R. Hildebrand: Least costly identification
experiment for control. Automatica 42(10), 1651–1662 (2006)

7H. Jansson (2004). Experiment design with applications in identification for control (Doctoral dissertation,
Signaler, sensorer och system).

8H. Hjalmarsson: System identification of complex and structured systems. European Journal of Control
15(4), 275–310 (2009).
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A reformulation into time-invariant experiment design problem

• Solution9: Design by intervals of "large" duration N (T = nintN)

9M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).
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A model of the cumulative regret

• Notations:

During the interval k and for each τ = 1, · · · , N

xk(τ + 1) = A(θ0)xk(τ) + B(θ0)uk(τ) + ek(τ)

uk(τ) = −K(θ̂k)xk(τ) + vk(τ)
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A model of the cumulative regret

• Notations:

• Assumption 1: we have an initial estimate θ̂1 ∼ N(θ0, I−1
1 ) (if not, perform an initial

identification).

• Assumption 2: all the controllers {K(θ̂k)}nint
k=1 stabilize the loop.
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A model of the cumulative regret

• Let us rewrite the regret

r(T ) =
nint∑
k=1

rk

rk =
N∑

τ=1

(E[xk(τ)⊤Qxk(τ) + Ruk(τ)2] − E[x̃k(τ)⊤Qx̃k(τ) + Rũk(τ)2])

• Given a stationary signal y(t) with large number N ≫ 1 of data y(t), we have

N∑
t=1

y(t)⊤y(t) ≈ N ||y||2

→ rk ≈ NE[||xk||2Q+||uk||2R−||x̃k||2Q−||ũk||2R] if N ≫ 1.
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A model of the cumulative regret

• Linear system:

Adaptive loop : xk = xe,k + xv,k uk = ue,k + uv,k

Ideal loop : x̃k = x̃e,k ũk = ũe,k

• Stationary stochastic vk independent from ek, we have

rk ≈ N(re,k(θ0, K(θ̂k)) + rv,k(θ0, K(θ̂k)))

re,k(θ0, K(θ̂k)) = E[||xe,k||2Q+||ue,k||2R−||x̃e,k||2Q−||ũe,k||2R] −→ exploitation regret

rv,k(θ0, K(θ̂k)) = E[||xv,k||2Q+||uv,k||2R] −→ exploration regret

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 13 / 40



A model of the cumulative regret

• Linear system:

Adaptive loop : xk = xe,k + xv,k uk = ue,k + uv,k

Ideal loop : x̃k = x̃e,k ũk = ũe,k
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Tue(z, θ0, K) = −KTxe(z, θ0, K)
Tuv(z, θ0, K) = I − KTxe(z, θ0, K)B(θ0)

• N ≫ 1 → transient dynamics from controller changes are negligible in rk.

• Consequence:
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→ we design the power spectrum densities (PSD) ϕvk of each vk.

First objective
Reformulate the regret minimization problem as a convex optimization problem in the
PSDs ϕv1 , · · ·, ϕvnint

.
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Reformulation of the regret minimization problem

• We have to make ϕvk appear in both re,k(θ0, K(θ̂k)) and rv,k(θ0, K(θ̂k)).

• Exploration regret → Parseval’s theorem:

rv,k(θ0, K(θ̂k)) = E[||Txv(z, θ0, K(θ̂k))vk||2Q+||Tuv(z, θ0, K(θ̂k))vk||2R]

= 1
2π

∫ π

−π

E[D(ejω, θ0, K(θ̂k))]ϕvk (ω)dω

where

D(ejω, θ0, K(θ̂k)) = T∗
xv(ejω, θ0, K(θ̂k))QTxv(ejω, θ0, K(θ̂k))

+ R|Tuv(ejω, θ0, K(θ̂k))|2
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Reformulation of the regret minimization problem

• Exploitation regret re,k(θ0, K(θ̂k)) : linked to uncertainties E[(θ̂k − θ0)(θ̂k − θ0)⊤] =
inverse of the Fisher information matrix Ik which depends linearly10 on ϕv1 , · · · , ϕvk−1 .

• Observation: the global minimum of θ̂k → re,k(θ0, K(θ̂k)) is minimum 0 and it is
reached at θ̂k = θ0 (LQ control property).

• Second-order Taylor expansion of θ̂k → re,k(θ0, K(θ̂k)) evaluated at θ0

re,k(θ0, K(θ̂k)) ≈ 1
2E[(θ̂k − θ0)⊤W(θ0, K(θ0))(θ̂k − θ0)]

≈ 1
2 tr(W(θ0, K(θ0))Ik(ϕv1 , · · · , ϕvk−1 )−1)

• With H(k) ⪰ W(θ0, K(θ̂k))1/2Ik(ϕv1 , · · · , ϕvk−1 )−1W(θ0, K(θ0))1/2, minimizing
re,k(θ0, , K(θ0)) is equivalent to minimizing tr(H(k)) such that(

H(k) W(θ0, K(θ0))1/2

W(θ0, K(θ0))1/2 Ik(ϕv1 , · · · , ϕvk−1 )

)
⪰ 0

10M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).
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Reformulation of the regret minimization problem

• Problem to be solved:

min
ϕvk

,H(k)
N

nint∑
k=1

(1
2 tr(H(k)) + rv,k(θ0, K(θ̂k))

)
Subject to, for each k = 1, · · · , nint(

H(k) W(θ0, K(θ0))1/2

W(θ0, K(θ0))1/2 Ik(ϕv1 , · · · , ϕvk−1 )

)
⪰ 0

rv,k(θ0, K(θ̂k)) = 1
2π

∫ π

−π

E[D(ejω, θ0, K(θ̂k))]ϕvk (ω)dω

• With an adequate parametrization of each ϕvk , we can transform the problem into a
convex semi-definite programming (SDP).
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)
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rv,k(θ0, K(θ̂k)) = 1
2π

∫ π

−π

E[D(ejω, θ0, K(θ̂k))]ϕvk−1 (ω)dω

• Observation 1: the estimate θ̂nint of the last interval does not depend on vnint .
Hence, vnint only penalizes the regret... We should set it to 0.

• Observation 2: the estimate θ̂1 of the first interval does not depend on any vk. Hence,
tr(H(1)) = constante. We can remove this term and the corresponding LMI.
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Reformulation of the regret minimization problem

• ϕvk (ω) ≥ 0 ∀ω ∈] − π, π] guaranteed if and only if it exists Z(k) = Z(k)⊤(
Z(k) − A⊤Z(k)A c1:m(k) − A⊤Z(k)B

c⊤
1:m(k) − B⊤Z(k)A c0(k) − B⊤Z(k)B

)
⪰ 0

with

A =
(

01×(m−1) 1
0(m−1)×(m−1) 0(m−1)×1

)
B =

(
1

0(m−1)×1

)
c1:m(k) =

 c1(k)
...

cm(k)


(Positive real lemma)
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Reformulation of the regret minimization problem

min
Z(k)=Z(k)⊤

cq(k),H(k)

N

nint∑
k=1

(
1
2

tr(H(k)) +
m∑

q=0

βq(θ0, K(θ̂k))cq(k)

)
Subject to , for each k = 1, · · · , nint,(

H(k) W(θ0, K(θ0))1/2

W(θ0, K(θ0))1/2 I1 +
∑k−1

i=1 Le(θ0, K(θ̂i)) +
∑k−1

i=1

∑m

q=0 cq(i)Lv,q(θ0, K(θ̂i))

)
⪰ 0(

Z(k) − A⊤Z(k)A c1:m(k) − A⊤Z(k)B
c⊤

1:m(k) − B⊤Z(k)A c0(k) − B⊤Z(k)B

)
⪰ 0
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βq(θ0, , K(θ̂k))cq(k)

)
Subject to , for each k = 1, · · · , nint − 1,(

H(k) W(θ0, K(θ0))1/2

W(θ0, K(θ0))1/2 I1 +
∑k

i=1 Le(θ0, K(θ̂i)) +
∑k

i=1

∑m

q=0 cq(i)Lv,q(θ0, K(θ̂i))

)
⪰ 0(

Z(k) − A⊤Z(k)A c1:m(k) − A⊤Z(k)B
c⊤

1:m(k) − B⊤Z(k)A c0(k) − B⊤Z(k)B

)
⪰ 0
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min
Z(k)=Z(k)⊤

cq(k),H(k)

N

nint−1∑
k=1

(
1
2

tr(H(k)) +
m∑

q=0

βq(θ̂1, K(θ̂1))cq(k)

)
Subject to , for each k = 1, · · · , nint − 1,(

H(k) W(θ̂1, K(θ̂1))1/2
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⪰ 0

• Problem 1: we don’t know θ0...

• Problem 2: K(θ̂2), · · · , K(θ̂nint ) unknown as well (nonlinear function of the cq(k))...

• Solution: we replace θ0 and all future estimates θ̂k.
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Dealing with chicken-and-egg issue

• Once the SDP is solved, we should excite the control loop with the signals
vk = Fopt

k (z)w.

• However, the design is done based on θ̂1 which might not be an accurate estimate of
θ0...

• Observation:
θ̂2 is expected to be less uncertain than θ̂1.
θ̂3 is expected to be less uncertain than θ̂2.
etc.

• Idea: receding horizon design11 of the PSDs ϕvk .

11M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).
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A computationally expensive exploration scheme...

• At the beginning of any interval k, we have to

identify θ̂k and the controller K(θ̂k).
compute the Hessian W(θ̂k, K(θ̂k)) = W (finite differentiation).
compute the exploration coefficients βq(θ̂k, K(θ̂k)) = βq.
compute the Fisher matrices Le(θ̂k, K(θ̂k)) = Le and Lv,q(θ̂k, K(θ̂k)) = Lv,q.
solve the SDP.
do the spectral factorization of ϕopt

vk
.

• Stability? Since θ̂k ∼ N(θ0, I−1
k ), we can check12 if K(θ̂k) stabilizes the system given

a probability α.

• If the stability test fails, we set θ̂k = θ̂k−1.

• Everything has to be done within a duration less than the available sampling time!

12X. Bombois, M. Gevers, G. Scorletti, B. D. O. Anderson (2001). Robustness analysis tools for an
uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629–1636
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Numerical example

• State system with nx = 3 states with

A0 =

(−0.39 0.37 −0.57
−0.25 −0.78 −0.08
1.32 0.25 −0.13

)
B0 =

(0.21
0
0

)
Σe = I3
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Numerical example

• Model structure: each entry of both matrices parameterized independently → 12
parameters.

• Control parameters Q = I3 and R = 0.2.

• We choose T = 500, N = 1 and nint = 500.

• Initial estimate: open-loop identification with 12 data and a white noise input with a
variance equal to 1.
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Receding horizon approach

m Computation time
0 50 min
1 2 h 20 min
2 4 h 27 min
3 7 h 49 min
4 12 h 4 min
5 17 h 49 min

Table: Computation for one noise realization from t = 1 till t = 500 and different FIR order m.

• Too long...

• Main reason: the SDP has many variables and constraints, especially at the beginning.

Second objective of the talk
Reduction of the computation complexity of the exploration scheme
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Second objective of the talk
Reduction of the computation complexity of the exploration scheme
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Exploration coefficients βq

βq = 1
2π

∫ π

−π

D(ejω, θ̂k, K(θ̂k)) cos(qω)dω

where

D(ejω, θ̂k, K(θ̂k)) = T∗
xv(ejω, θ̂k, K(θ̂k))QTxv(ejω, θ̂k, K(θ̂k)) + R|Tuv(ejω, θ̂k, K(θ̂k))|2

Result on LQ control property

D(ejω, θ̂k, K(θ̂k)) = R + B(θ̂k)⊤P(θ̂k)B(θ̂k)

where P(θ̂k) is the solution of the discrete-time algebraic Riccati equation involved in the
computation of K(θ̂k).

• Consequence: β0 = R + B(θ̂k)⊤P(θ̂k)B(θ̂k) and βq = 0 for any q ≥ 1.
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Reformulation of the regret minimization problem

• The SDP to be solved at the beginning of any interval k is simplified to:

min
Z(l)=Z(l)⊤

cq(l),H(l)

N

nint−1∑
l=k

(1
2 tr(H(l)) + β0c0(l)

)
Subject to , for each l = k, · · · , nint − 1,(

H(l) W1/2

W1/2 Ik + (l − k + 1)Le +
∑l

i=k

∑m

q=0 cq(i)Lv,q

)
⪰ 0(

Z(l) − A⊤Z(l)A c1:m(l) − A⊤Z(l)B
c⊤

1:m(l) − B⊤Z(l)A c0(l) − B⊤Z(l)B

)
⪰ 0

• Still a lot of variables and constraints... but we can remove a lot of them!

Theorem
The solution of the SDP guarantee ϕopt

vk+1 = · · · = ϕopt
vnint−1 = 0, i.e., the next intervals

are not excited!

Proved from dual theory.
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Result: theoretical result on the structure of the solution of the SDP

Condition for lazy exploration
The PSD ϕvk for the current interval k satisfies ϕvk = 0 if and only if

β0 ≥ N

2 λmax

(
nint−1∑

l=k

T (ζ0(k), · · · , ζm(k))

)
where T (ζ0(k), · · · , ζm(k)) is the Toeplitz symmetric matrix whose first row is
(ζ0(k), · · · , ζm(k)) with

ζq(k) = tr(W(Ik + (l − k + 1)Le)−1Lv,q(Ik + (l − k + 1)Le)−1)

• Advantage: checking this inequality is faster than solving the SDP.

• Interpretation: we don’t need to excite at all if
the information Ik + (l − k)Le obtained without excitation is large.
the main eigenvectors of its inverse are perpendicular to the ones of W.
the exploration penalization coefficient β0 is large.
the number nint − k + 1 of remaining intervals is small.
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Outline of the algorithm

• At the beginning of any interval k, we

identify θ̂k and the controller K(θ̂k).
perform the stability test and set θ̂k = θ̂k−1 if it fails.
compute the Hessian W.
compute the exploration coefficient β0.
compute the Fisher matrices Le and Lv,q.
check if

β0 ≥ λ

(
nint∑
l=k

T (ζ0(k), · · · , ζm(k))

)
If it is true, set vk = 0. Otherwise solve the SDP by removing all the variables and
constraints of the PSD ϕvk+1 , . . . , ϕvnint

and then use spectral factorization on ϕopt
vk

.
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Numerical result

• Let us now consider back the numerical example combined with the three results
(nx = 3, nθ = 12, N = 1 and nint = 500).

FIR order m Before After
0 50 min 19.9 s
1 2 h 20 min 20.7 s
2 4 h 27 min 28.2 s
3 7 h 49 min 29.3 s
4 12 h 4 min 35.7 s
5 17 h 49 min 39.6 s

Table: Computation times obtained with the naive approach with the receding horizon strategy
for one noise realization from t = 1 till t = 500 and different FIR order m.

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 34 / 40



Numerical example

• Change of settings: T = 100000, N = 1000, nint = 100.

• Initial open-loop identification experiment with 200 data and a white Gaussian noise
excitation of variance 0.1.

• Comparison of the proposed scheme with the Thompson sampling approach13 and the
certainity equivalence approach14 with

v(t) ∼ N

(
0,

a√
t

)

• 100 Monte Carlo simulations with different realizations for e and w (same for initial
estimate) in order to approximate the expectation operator in the regret expression.

• a tuned by using a gridding approach so that r(T ) is minimized.
13Y. Ouyang, M. Gagrani, and R. Jain. Control of unknown linear systems with Thompson sampling. In

2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1198–1205. IEEE, 201

14F. Wang and L. Janson. Exact asymptotics for linear quadratic adaptive control. Journal of Machine
Learning Research, 22(265):1–112, 2021
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Numerical example

Method r(T )
1/

√
t-decaying exploration 30393

Thompson sampling 28823
Proposed scheme with m = 0 26490
Proposed scheme with m = 1 26333
Proposed scheme with m = 2 26290
Proposed scheme with m = 3 24973
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Numerical example
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• Even though AF3E beats all the other methods, it performs the worst during the first
half of the experiment (due to jumping phenomenon at the beginning)...
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Numerical example
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• After t ≥ 9000, the proposed scheme stopped exciting → all the exploration effort is
done at the beginning.
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Numerical example
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• With m = 3, we excite well the resonance of the system.
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Conclusion and perspectives

• Formulation of the regret minimization problem in the linear quadratic adaptive
framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the
literature.

• A drawback: the aggressive exploration strategy for the first intervals can saturate the
output and/or the input.

• Some possible solutions to be investigated:
add input/output constraints which can be transformed into a LMI.
consider a worst-case design15 of the external excitation.

15M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 40 / 40



Conclusion and perspectives

• Formulation of the regret minimization problem in the linear quadratic adaptive
framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the
literature.

• A drawback: the aggressive exploration strategy for the first intervals can saturate the
output and/or the input.

• Some possible solutions to be investigated:
add input/output constraints which can be transformed into a LMI.
consider a worst-case design15 of the external excitation.

15M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 40 / 40



Conclusion and perspectives

• Formulation of the regret minimization problem in the linear quadratic adaptive
framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the
literature.

• A drawback: the aggressive exploration strategy for the first intervals can saturate the
output and/or the input.

• Some possible solutions to be investigated:
add input/output constraints which can be transformed into a LMI.
consider a worst-case design15 of the external excitation.

15M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 40 / 40



Conclusion and perspectives

• Formulation of the regret minimization problem in the linear quadratic adaptive
framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the
literature.

• A drawback: the aggressive exploration strategy for the first intervals can saturate the
output and/or the input.

• Some possible solutions to be investigated:
add input/output constraints which can be transformed into a LMI.
consider a worst-case design15 of the external excitation.

15M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 40 / 40



Conclusion and perspectives

• Formulation of the regret minimization problem in the linear quadratic adaptive
framework as a linear time invariant experiment design problem by intervals.

• Reduction of the computation time of the proposed scheme.

• Numerical example: the proposed scheme can beat other exploration strategies of the
literature.

• A drawback: the aggressive exploration strategy for the first intervals can saturate the
output and/or the input.

• Some possible solutions to be investigated:
add input/output constraints which can be transformed into a LMI.
consider a worst-case design15 of the external excitation.

15M. Forgione, X. Bombois, and P. M.J. Van den Hof. Data-driven model improvement for model-based
control. Automatica, 52:118–124 (2015).

Kévin Colin (DCS, KTH) CT Identification November 23, 2023 40 / 40



Thank you for you attention!
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