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Dalle Molle Institute for Artificial Intelligence

Areas of expertise of the institute

Machine Learning

Artificial Vision

Optimization

Statistics

Computational biophysics

Systems & Control
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Learning for Decision & Control

Our research focuses on:

System Identification

Model Predictive Control

Distributed Optimization

Robotics

At the interface of machine learning/control. Example (my research):

1 Deep learning tools for dynamical system models

2 Bayesian optimization for model learning and controller tuning
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Bayesian Optimization for Machine Calibration

Calibration problems are common in engineering practice:

Several tuning knobs are available

Optimal values to be determined

Direct experimentation is possible

Typical approaches:

Expert trial-and-error

Model-free Design of Experiment:
I Full factorial design
I Fractional factorial design
I ...

Drilling Machine

(Georg Fisher)

Bayesian Optimization formalizes trial-and-error optimization!
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Bayesian Optimization for Machine Calibration

The calibrator aims at minimizing a given performance index J w.r.t.
tuning parameters θ:

θopt = arg min
θ∈Θ

J(θ)

The game has the following rules:

An analytical expression of J as a function of θ is not available

One can run experiments of J for different values of θ and measure
the corresponding noisy observation J

Each experiment can be costly and time-consuming

Goal: approach the global optimum of J in a limited number of
experiments
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Global Optimization Algorithms
Overview

Different derivative-free global optimization may be used:

Response surface methods

Genetic algorithms

Particle Swarm Optimization

. . .

Bayesian Optimization is efficient in terms of function evaluations

Like response surface methods, BO fits a surrogate Ĵ(θ) of the
unknown objective J(θ)

However, the surrogate model is stochastic (describes uncertainty)

Explicitly balances exploration and exploitation
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Bayesian Optimization

Iteratively updates a stochastic surrogate model Ĵ(θ) of the unknown
J(θ) via Bayesian inference. Typically, a Gaussian Process (GP)

Balances exploitation and exploration by optimizing an acquisition
function A(θ) instead of the surrogate model directly:

θi+1 = arg max
θ∈Θ

A(θ)

The acquisition function A(θ) gives high value to points with expected
good performance → exploitation and/or high variance → exploration
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Bayesian Optimization
Gaussian Process

The function J(θ) is assumed Gaussian with prior mean
E [J(θ)] = µ(θ) and covariance cov[J(θ1), J(θ2)] = κ(θ1, θ2).

The posterior mean and covariance given a new observation (θi , Ji ) is
obtained in closed form
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Bayesian Optimization
Acquisition function

The GP defines the probability distribution of J(θ) for each parameter θ.
This probability is used to define an acquisition function A(θ).

The acquisition function Probability of Improvement is defined as:

A(θ) = PI(θ) = Prob(J(θ) ≤ Jmin)
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Bayesian Optimization
Algorithm

Steps of BO: for i = 1, 2, . . . n

1 Execute experiment with θi , measure Ji = J(θi ) + ei
2 Update the GP model Ĵ(θ) with (θi , Ji )

3 Construct acquisition function A(θ)

4 Maximize A(θ) to obtain next query point θi+1

GP at iteration i
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Bayesian Optimization
Example

iteration 6

GP fit
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Bayesian Optimization
Example
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Bayesian Optimization
Example

iteration 8

GP fit
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Bayesian Optimization
Example

iteration 9

GP fit
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Bayesian Optimization
Example

iteration 20

GP fit
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Bayesian Optimization for Systems & Control

We can’t tell more of our industrial collaborations!

Some other (disclosable) applications

Controller tuning for a 7-DoF robotic manipulator

Tuning of sampling time, solver tolerance, etc. for embedded MPC

Choice of the model for MPC

. . . and related publications

L. Roveda, M. Forgione, D. Piga. Robot control parameters auto-tuning in trajectory tracking applications.
Control Engineering Practice, 101(2020), pp 72-78, 2020

M. Forgione, D. Piga, A. Bemporad. Efficient Calibration of Embedded MPC.
In Proc. of the 21st IFAC World Congress, 2020.

D. Piga, M. Forgione, S. Formentin, A. Bemporad. Performance-oriented model learning for data-driven MPC design.
IEEE Control Systems Letters, 3(3), pp 577-582, 2019.
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MPC Model Calibration
Motivation

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

A trade-off emerges between accuracy and complexity

In this work:

We consider the model as a design parameter and tune it on
calibration experiments to optimize a user-defined performance index

We specialize this framework for a hierarchical MPC architecture
often encountered in industrial applications

Can be seen as an extension of Identification for Control
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Control architecture

We consider the Reference Governor architecture for system So

1 An inner controller K handles fast dynamics

2 An outer MPC takes care of constraints and performance specs

MPC requires a model M of the inner loop Mo . Existing approaches:

Build model S for So , design K ⇒ M = feedback(SK , I )

Direct identification of K targeting a reference model M (VRFT)

In our work, M and K are tuned simultaneously with a data-driven global
optimization approach.
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Control architecture
Inner Loop Controller

The inner controller K generates the system input u.
It is designed to handle fast dynamics

Stabilize inner loop M

Reject fast system disturbances

It is often as simple as a PID. . .

K (z , θ) = θP + θITs
1

z − 1
+ θD

Nd

1 + NdTs
1

z−1
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Control architecture
Model Predictive Controller

The outer MPC generates the reference g for the inner loop Mo using a
model M(θ) : g → [ yu ]

ξt+1 = AMξt + BMgt[
yt
ut

]
= CMξt + DMgt ,

to handle constraints and enhance performance, according to

min
{gt+k|t}Npk=1

Np∑
k=1

∥∥yt+k|t − rt+k

∥∥2

Qy
+
∥∥ut+k|k−ut+k−1|t

∥∥2

Q∆u

s.t. model equations, constraints on g , y , u, ∆u
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Bayesian Optimization
Algorithm

Steps of BO: for i = 1, 2, . . . n

1 Execute experiment with θi , measure Ji = J(θi ) + ei
2 Update the GP model θ → J(θ) with (θi , Ji )

3 Construct acquisition function A(θ)

4 Maximize A(θ) to obtain next query point θi+1

GP at iteration i
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Simulation Example

Cart-pole system

State x =[p ṗ φ φ̇]>

Output y =[p φ]> corrupted
by white measurement noise

Input u = F with fast additive
disturbance (10 rad/sec)

Control structure: inner PID
on φ, outer MPC as Reference
Governor

Objective: starting at p0 = 0, φ0 = 15o

1 stabilize pendulum in the upright
unstable equilibrium φ = 0

2 keep cart position p in [−1 1] m

J(θ) = log

[
1

T

T∑
t=1

(
1

10
|pt |+

9

10
|φt |

)]
+

T∑
t=1

`(|pt |− 1)

Design parameters: PID gains,
model M, prediction horizon Np

Calibration experiments of 10 s

TPID
s =5 ms, TMPC

s =50 ms
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Simulation Example

Performance index vs. iteration
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For increasing iteration i , more and more points have “low” cost

Optimal trajectory satisfies constraints p ∈ [−1 1] m

Achieved performance is better than our manual tuning
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MPC Calibration Example

Cart-pole system

Input: force F with fast
disturbance (5 rad/sec)

Output: noisy position p and
angle φ

Objective: follow trajectory for
p, keep φ small.

Optimization-based calibration of

1 MPC sample time TMPC
s

2 MPC weights Qy and Q∆u

3 ...

4 QP solver tolerances

J(θ) =

∫ Texp

0

|p(t)− p(t)|+ 30|φ(t)| dt

subject to:

TMPC
calc (θ) < TMPC

s

to guarantee real-time implementability.
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MPC Calibration Example

vs.

An Intel i5 PC (left) vs. an ARM-based Raspberry PI 3 (right)

PI is about 10 time slower than the PC for MPC computations

(IDSIA) Performance-oriented model learning JNA 2020 22 / 25



MPC Calibration Example

Optimized MPC on the PC
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Optimized MPC on the Raspberry PI
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Position and angle control tighter on the PC

Faster loop update on the PC ⇒ more effective disturbance rejection

Calibration squeezes max performance out of the hardware!
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Conclusions

Bayesian Optimization is a powerful global optimization tool. Applications:

Machine calibration

Robot control tuning

Embedded MPC design

MPC model learning

Questions:

How does a controller generalizes to unseen trajectories?

How to ensure safety during experimentations?

Extension: preference-based learning. Performance index not available,
human expert gives his/her preferences to binary comparisions.
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Thank you.
Questions?

marco.forgione@idsia.ch
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